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FOREWORD

Over the past several years there has been a renewed interest in determining
dynamic aircraft parameters, such as stability and control derivatives, from flight-
test measurements. The need for these data has persisted for many years, but only
recently have highly automated data acquisition systems and advanced estimation
techniques been available that can extract such information efficiently. Most flight-
test organizations now have experience with one or more parameter estimation tech-
niques to determine aircraft stability and control derivatives. The technology
stands at the threshold of applications for numerous other parameter estimation
problems in aircraft flight testing.

To provide a forum for discussion of the status and future of this technology,
the NASA Flight Research Center hosted a Symposium on Parameter Estimation
Techniques and Applications in Aircraft Flight Testing. Technical papers were
presented by selected representatives from industry, universities, and various
Air Force, Navy, and NASA installations who are actively working in the field.
The topics covered included the newest developments in identification techniques,
the most recent flight-test experience, and the projected potential for the near
future.

Both formal and informal papers were presented in the technical sessions.
The formal papers were complete technical papers, and the informal papers were
brief summaries of preliminary results not ready for final publication or recent
results that were important to the symposium but had been published previously.
This volume contains the complete formal papers and abstracts of the informal
papers. The publication of these papers does not constitute approval of their tech-
nical content by the National Aeronautics and Space Administration, but rather pro-
vides for exchange of information and, hopefully, stimulation of new ideas.

Dr. A. V. Balakrishnan, Chairman, Systems Science Department, School of
Engineering and Applied Science, University of California, Los Angeles, was the
guest speaker at the symposium dinner on April 24. A transcription of his talk,
which concentrated on the major activities in systems identification outside the
United States, is included.

Herman A. Rediess
Symposium Technical Chairman
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AN OVERVIEW OF PARAMETER ESTIMATION TECHNIQUES AND
APPLICATIONS IN AIRCRAFT FLIGHT TESTING

Herman A. Rediess
NASA Flight Research Center

SUMMARY

This paper introduces parameter estimation as it applies to aircraft flight test-
ing and presents an overview of the symposium. The evolution of techniques used
in flight testing is reviewed briefly, and it is pointed out how the changing churac-
ter of the aircraft tested and the availability of advanced data systems have promoted
this evolution. Recent advances in optimal estimation theory have stimulated wide-
spread interest and activity in parameter estimation. The framework of these
advanced techniques is outlined to set the stage for subsequent papers. The session
topics are introduced and related to the requirements of flight-test research.

INTRODUCTION

Over the past several years there has been a renewed interest in determining
dynamic aircraft parameters, such as stability and control derivatives, from flight-
test measurements. The need for these data has long persisted, but only recently
have highly automated data acquisition systems and advanced estimation techniques
been available that can extract such information efficiently. Most flight-test organi-
zations now have experience with one or more parameter estimation techniques to
determine aircraft stability and control derivatives. The technology stands at the
threshold of application to numerous other parameter estimation problems in air-
craft flight testing.

This symposium was organized to provide a forum for discussion of the status
and future of the technology. This paper discusses, first, the need for this tech-
nology in aircraft flight research and the evolution of techniques over many years;
then the basic concepts and approach of contemporary parameter estimation tech-
niques are outlined; and finally the session topics are introduced and related to the
needs of flight-test research.



BACKGROUND

Flight test has always been important in advancing aircraft technology, not by
merely showing that a new design flies, but by obtaining quantitative measures of
what is good and bad about the design so that future designs can be improved. The
application of parameter estimation techniques to aircraft flight testing is simply the
process of obtaining quantitative measures of various aircraft characteristics. In
general, the parameters may relate to aerodynamic, structural, performance, or
other types of characteristics. Typically, the flight-determined characteristics are
compared with predicted values to verify or point out deficiencies in the prediction
techniques. They are used to substantiate design goals, to assess control system
performance, to verify and improve piloted simulators, and to establish design
criteria. Clearly, the need for such data has not diminished.

Unfortunately, most of the airplane characteristics of interest, such as the aero-
dynamic forces, cannot be measured directly in flight. It has been necessary to
develop techniques that use measurable quantities, such as the motion resulting
from a change in a force. There are many possible approaches to the problem, and
the search for more accurate and efficient methods is the prime motivation for con-
tinued activity in this field.

Since the determination of aerodynamic characteristics in flight, mainly sta-
bility and control derivatives, has been the principal aircraft application of param-
eter estimation, this review concentrates on those activities. Only the key tech-
nology changes are traced; no attempt is made to provide a complete survey of the
field.

The evolution of techniques has been motivated primarily by two factors: the
changing nature of the dominant aircraft dynamics as higher performance was ob-
tained, and the desire to have more effective techniques in terms of improved
accuracy or improved efficiency in applying them, or both.

From the beginning of manned flight to about World War II, aircraft longitudinal
dynamics were characterized by the long-period or phugoid motion and lateral-
directional dynamics by the rolling and quasi-steady-state yawing characteristics.
The most important aerodynamic characteristics affecting aircraft motion could be
measured in flight with acceptable accuracy by analyzing steady-state conditions.

One of the first test programs to obtain quantitative measurements of aircraft
aerodynamic characteristics in flight was reported on by Warner and Norton in 1919
(ref. 1). The tests were made on two Curtiss "Jenny" JN-4H-type biplanes at
Langley Field, Va. Lift and drag coefficients were determined by means of a series
of static maneuvers performed at different airspeeds. The lift and drag coefficients
were estimated by equating the lift to the aircraft weight and the drag to the thrust,
assuming certain engine thrust characteristics. The in-flight measurements were
airspeed, inclination of the aircraft (pitch attitude), and engine speed. The instru-
mentation and analysis techniques were rudimentary, but it was an important begin-
ning.



In 1922 Norton and Brown determined the roll control and damping coefficients
of a biplane by analyzing the initial and steady-state portions of a rolling maneuver
(ref. 2); and in 1923 Norton estimated the longitudinal static stability and damping
coefficients by analyzing data from a combination of static maneuvers and phugoid
oscillations (ref. 3). Soule and Wheatley (ref. 4) appear to be the first to have
determined all the major longitudinal stability and control derivatives of an airplane
from flight-test data and compared the results with theoretical predictions. The
analysis in each of these studies used simplified equations representing one-degree-
of-freedom motion and solved for one parameter at a time, assuming values for other
parameters based on wind-tunnel tests or other flight tests. This basic approach
was used with only minor changes up to the mid-1940's.

As higher performance aircraft were being developed during the 1940's, the
nature of aircraft dynamics affecting longitudinal flying qualities was changing. A
comparison of the discussions of Soule’in 1940 (ref. 5) and Phillips in 1949 (ref. 6)
shows that the dominant characteristic shifted from the phugoid mode in 1940 to the
short-period mode in 1949. The quasi-steady-state techniques that had been used to
define the phugoid parameter were inadequate for determining the short-period sta-
bility derivatives. Milliken also pointed out in 1947 (ref. 7) that the increasing use
of automatic control systems required more accurate modeling of the aircraft dynamic
characteristics. These factors, coupled with the research engineer's motivation to
improve the accuracy of flight results, stimulated the development of several new
techniques for determining stability and control characteristics from flight data.

In the late 1940's through the mid-1950's, servomechanism theory was expanded
rapidly, and the frequency-domain techniques of Nyquist and Bode were popular.
It was a natural extension to use frequency-response techniques for determining the
dynamic characteristics of an airplane from flight-test data. The first approach
(ref. 7) was to obtain a frequency response in flight by oscillating the airpane,
by means of the autopilot, at discrete frequencies and measuring the steady-state
amplitude ratio and phase angle between the control surface and a response variable,
such as pitch rate. A disadvantage of this approach was the considerable flight time
required to sweep through all the frequencies of interest at each flight condition.
Seamans, Blasingame, and Clementson (ref. 8) used a method for determining the
aircraft frequency response from a single transient response maneuver by Fourier
analysis. This technique greatly reduced the flight-test time. Greenberg (ref. 9)
discusses several frequency-response methods. If the aircraft frequency response
or transfer function is the final result desired from a flight test, these methods are
appropriate. However, if the stability and control derivatives are needed, another
step must be taken to relate the derivatives to the measured frequency response (for
example, see refs. 7 and 10).

Because the problem of determining stability and control derivatives is based on
a linearized, small-perturbation model of the aircraft dynamics, it was natural to
consider using a linear least-squares fit of flight data to the linearized equations of
motion as Greenberg did in 1951 (ref. 9). In 1954 Shinbrot developed a generalized
least-squares method which encompassed the earlier least-squares methods and had
a greater potential (ref. 11). A real drawback to these methods at that time was
that they involved extensive calculations which had to be done by hand, because



digital computers were not yet available. Furthermore, it was desirable to "fit" the
equations at many time points in order to obtain good accuracy; this meant that a
large volume of data had to be processed manually from flight film or oscillograph
recordings. A fundamental problem with linear least-squares methods is that noisy
measurements result in biased estimates of the stability derivatives. However, the
general lack of acceptance of the methods was attributed more to the difficulty of
applying them than to concern over biased estimates.

A rather simple technique was often used in the 1950's for determining the longi-
tudinal short-period parameters. This technique is still adequate for many situa-
tions. When the short-period-mode frequency is much greater than the phugoid
frequency and the damping ratio is low (less than 0.3), the primary short-period-
mode stability derivatives can be estimated directly from measurements of the fre-
quency, damping, and amplitude ratio of normal acceleration to angle of attack
(ref. 12). Similar approximate methods were not satisfactory for the highly coupled
lateral-directional dynamics, but an effective graphical technique developed by
Doetsch (refs. 13 and 14) was used extensively. These techniques were straight-
forward and not difficult to apply but required ideal, free-oscillation maneuvers.
As aircraft performance reached progressively higher Mach numbers, the damping
decreased to such low values that at times it was too risky to obtain test data without
the damper systems turned on. Attempts were made to correct for the effect of the
damper system (ref. 15), but the empirical approach used left considerable uncer-
tainty in the results. Basically, these simple techniques were applicable only if
there were no pilot or automatic control system inputs during the free oscillation.

A technique called "analog matching" was used to overcome the problem of
poorly conditioned maneuvers (ref. 15). It is a manual curve-fitting technique in
which an analog computer is used to compute the response of a model. This re-
sponse is then "matched" to the flight-measured response by adjusting the stability
and control derivatives of the model. This approach was not a spontaneous develop-
ment for determining derivatives but was, rather, an outgrowth of the use of analog
computers as flight simulators. Analog matching was used as early as 1951 to check
aircraft parameters determined by other methods (ref. 16). Even though the tech-
nique of analog matching has been greatly improved (ref. 17), the accuracy of the
results is highly dependent on the skill of the individual operator. Furthermore, it
can take an excessive number of man-hours to obtain an acceptable solution if
several parameters are to be determined.

The best techniques available up to 1966 are reviewed by Wolowicz in refer-
ence 18. The practical aspects of applying the techniques to flight data are covered
particularly well.

Although several dedicated engineers were working throughout the 1950's and
early 1960's to improve techniques, the effort was relatively small and was concen-
trated at two or three flight research installations. Two factors caused a revolution
in parameter estimation techniques starting in the mid-1960's: (1) Highly auto-
mated data acquisition systems were becoming standard in flight testing, and
(2) large-capacity, high-speed digital computers were available to solve compli-
cated algorithms efficiently. The ability to transfer the flight data directly to the
computer with no manual operations on the data and the availability of high-speed



computation permitted techniques to be considered that were previously impractical.
Though seldom mentioned in recent literature, in 1951 Shinbrot developed the con-
cept (ref. 19) that is fundamental to many contemporary techniques. At that time,
however, it was not practical to use his concept, which involved manually com-
puting the numerical minimization of a nonlinear functional. An application to the
simplest flight-test problem of determining only four longitudinal parameters took
up to 24 hours.

Interest in parameter estimation was renewed in 1968. Larson applied the
method of quasi-linearization at Cornell Aeronautical Laboratory (ref. 20), and
Taylor and Iliff applied basically the same method, but referred to as the modified
Newton-Raphson technique, at the NASA Flight Research Center (refs. 21 and 22).
The latter technique was based on the theoretical works of Balakrishnan (refs. 23
to 25). There have been numerous parallel developments since then in universities,
private research companies, and major aircraft companies, as well as at Air Force,
Navy, and NASA installations (for example, refs. 26 to 31). The papers presented
at this symposium will cover work performed since 1968, with projections to the
future.

This review has considered only the activities that have been most specifically
involved in applications to aircraft flight testing and that have taken place primarily
within the United States. Much work has been done in developing the general sys-
tems identification, estimation, filtering, and control theories and in applying them
specifically to other fields (ref. 32, for example). Often, systems identification or
parameter estimation is included as an important aspect of adaptive control systems
research (refs. 25, 28, and 33). A complete survey would obviously be much
broader than this limited review.

SYSTEMS IDENTIFICATION AND PARAMETER ESTIMATION

The meaning of the term "parameter estimation techniques" is not always clear
to the nonspecialist. In aircraft flight testing, the terminology that has been used
traditionally is "determination of stability and control derivatives," but this does
not cover the present scope of the technology. It is appropriate, therefore, to
define clearly at the outset what is meant by "parameter estimation techniques."

Parameter estimation techniques are methods used in systems identification
problems. The general problem of systems identification (fig. 1) is to determine
certain characteristics of the physical system from experimental test data. Measure-
ments are made of external inputs and resulting output responses that depend in
some way on the system characteristics to be determined. There may also be ex-
ternal disturbances that cannot be measured directly. Systems identification is the
process of estimating the characteristics from the input/output measurements.
Usually something is known beforehand about the system, such as the set of equa-
tions that describes its dynamic responses and approximate values of the forces and
moments on the system. However, systems identification theory also includes the
situation in which nothing is known except the input/output measurements.



There are several approaches to solving systems identification problems, and
all are strongly influenced by the amount and type of a priori knowledge available.
Parameter estimation techniques are the most common approaches. The general con-
cept is illustrated in figure 2 for a flight-test situation. As a specific example of this
concept, consider the problem of determining the stability and control characteris-
tics for small perturbations about a trim flight condition. The types of data used
are shown in figure 3, which is from a flight test of a lifting-body vehicle (ref. 22).
The control inputs are small-amplitude aileron and rudder pulses, and the measured
responses are roll rate, yaw rate, sideslip angle, bank angle, and lateral accelera-
tion. External random disturbances (turbulence) were negligible. These data were
recorded as pulse code modulation signals on magnetic tape, then formatted, scaled,
and restored on tape for reading into a digital computer. The recorded inputs were
used as inputs to the mathematical model, and the recorded response was compared
with the computed response. The model in this case was the set of linearized differ-
ential equations for lateral-directional motion, and the parameters to be estimated
were the linear coefficients, which are referred to as stability and control deriva-
tives.

Typically the techniques start with some a priori estimate of the derivatives,
such as wind-tunnel data. Usually the wind-tunnel data do not provide a good
match, as shown in figure 4. In applying parameter estimation techniques, some
algorithm is devised to adjust the stability and control derivatives in the model
until a set is obtained that minimizes the error between the computed and measured
time histories. A typical match is shown in figure 5.

The conceptual diagram in figure 2 and this example point out five key aspects
of parameter estimation techniques: (1) the mathematical model, (2) the estimation
criterion, (3) the computational algorithm, (4) the total data acquisition system, and
(5) the test input.

Mathematical Model

A model must be selected that adequately represents the aircraft characteristics
to be measured. The aerodynamic forces and moments on an aircraft are nonlinear
functions of several variables, such as Mach number, angle of attack, control sur-
face deflection, and sideslip angle. There may be significant structural modes,
aeroelastic effects, nonstationary aerodynamic effects, and flow separation. Yet in
many instances it is adequate to use a stationary, linearized, rigid-body model. In
other instances a more complicated model is necessary, such as at very high angles
of attack for which a nonlinear model may be required. An inappropriate model,
however, can degrade the accuracy of the parameter estimate and even prevent con-
vergence of the computation algorithm.

Estimation Criterion

There must be some means of assessing the fit of the computed response to the
flight-measured response. When the process is implemented manually, as in analog



matching (ref. 17), the operator makes the assessment on the basis of his experience
by visually comparing the time responses. In the automated techniques a "criterion
function" is used as indicated in figure 2. It is usually some form of an integral
square of the error between the computed and measured response. Under certain
conditions, it corresponds to the maximum likelihood criterion (ref. 23), which is
intended to produce the most probable values of the parameters. The "best" esti-
mate of the parameters is the set of parameters that minimizes the criterion function.

Computational Algorithm

The criterion function is nonlinear with respect to the parameters to be esti-
mated; therefore, it has to be minimized by an iterative computational algorithm.
Several algorithms that have been used are steepest descent, Newton-Raphson, modi-
fied Newton-Raphson (also referred to as quasi-linearization or differential correc-
tion), various conjugate gradient methods, various direct and random search tech-
niques, stochastic approximation, and an iterative Kalman filter method (refs. 32
and 34). The nature of nonlinear minimization is such that no one algorithm can be
classified as the best for all problems. Important factors in selecting the minimiza-
tion algorithm are startup routines, convergence, computational efficiency, dimen-
sionality, local minima, and whether the data processing will be on-line or batch.

Data Acquisition System

Parameter estimation is highly dependent on the quality of the flight-measured
data. In figure 2 the uncertainties in the measured flight response are represented
by additive noise. In reality the "noise" comes from several sources, and it is
necessary to consider the entire data acquisition process. Bias and random errors
can arise from imprecise location or orientation of sensors, calibration of the meas-
urement and recording system, and data drop out. Other errors can be introduced
from electrical noise, engine vibration pickup, sensor dynamics, inappropriate
signal filters, and quantization. A comprehensive discussion of flight-test instru-
mentation for aircraft parameter estimation is given in reference 18. Any elimina-
tion of errors, noise, or uncertainties within the data acquisition process will im-
prove the accuracy of the estimates. However, it is not always possible to optimize
the instrumentation specifically for parameter estimation because of project schedule
or manpower limitations. It is desirable to have techniques that are effective despite
measurement noise and uncertainties.

Test Input

As a minimum requirement, the test input must excite the principal response
modes that depend on the parameters to be determined. In the previous example a
combination of rudder and aileron pulses adequately excited the lateral-directional
motion. Thus the question arises whether one type of control input might be better



than another, in the sense that it provides better estimates. Several papers have
considered that question (ref. 35, for example) and have shown that in theory a
test input can be found that will tend to minimize the variance of the estimated
parameters. This concept has not been fully explored in a flight-test application.

Although there are variations from the basic concept depicted in figure 2, de-
pending on the specific situation being considered or the mathematical approach
used, the five key aspects listed on page 6 are always included in some form. For
example, if there are nonmeasured external disturbances, such as air turbulence,
it is necessary to add a state estimator to these five aspects.

It should be clear at this point that parameter estimation techniques are not
restricted to determining linear stability and control derivatives. Virtually any
flight test that can be modeled as an input/output dynamic system is amenable to
this approach. The search for possible new applications to flight testing has just
begun. Areas being considered include nonlinear aerodynamics, aircraft structural
dynamics, estimates of external disturbances such as air turbulence and vortex
wakes, and airframe/propulsion system interaction effects.

INTRODUCTION TO SYMPOSIUM SESSIONS

This symposium was organized to emphasize the practical and important aspects
of applying parameter estimation techniques to aircraft flight-testing problems.
Determining linear stability and control derivatives is emphasized because this is
where most of the practical experience has been gained. The intent is to discuss
the good and the bad features of the various methods used and to consider what im-
provements are needed. Also, several promising new areas of application are intro-
duced.

Sessions I and II, Flight Test Experience, present recent experience of seven
different organizations in determining stability and control derivatives. The contem-
porary techniques have been applied effectively to virtually every class of aircraft,
including general aviation aircraft, jet transports, high-performance fighters, STOL
and V/STOL aircraft, helicopters, lifting-body vehicles, and a host of special re-
search aircraft. The papers in these sessions discuss the effectiveness and practi-
cal aspects of using various techniques including one on-line method. They point
out special considerations that are needed for certain aircraft such as STOL and
helicopters.

Two papers present new methods that can extract derivatives from data contam-
inated by turbulence. Previously such data had to be discarded for lack of an analy-
sis method. In one lifting-body flight program at the NASA Flight Research Center,
about 10 percent of the data was unusable because of turbulence. A 10-percent loss
of data was significant in a program as expensive to conduct as the lifting-body pro-
gram or as the initial shuttle flight-test program may be.

Session III, Nonlinear Model Identification, presents the early efforts to deter-
mine nonlinear aerodynamic characteristics at high angles of attack. The goal is to
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estimate the force and moment coefficients directly as nonlinear functions of angle
of attack and angle of sideslip rather than as the usual linearized derivatives. This
topic is timely because of the great interest within DOD and NASA in the stall/spin
problem. Considerable effort is being directed toward achieving a better under-
standing of the causes of spin departure and how to prevent it. Large- or full-scale
flight test is important because of Reynolds number effects in this nearly separated
flow region at high angles of attack.

Session IV, New Techniques and Algorithms, includes three new approaches to
the parameter estimation problem. As mentioned previously, there is no clear-cut
best method for all problems, and so the search for more efficient techniques con-
tinues. Computational efficiency increases in importance as more complex models
are used. Nonlinear models increase the dimensionality of the estimation problem.
To consider turbulence effects on flexible aircraft, it will be necessary to include
structural modes in the model as well as a turbulence model. The only practical
way to analyze these higher order systems is to develop more effective algorithms.

Session V, Identifiability, Sensitivity, and Accuracy, considers in detail several
aspects of parameter estimation that are important to the specialist. Knowing the
conditions under which a system can be identified has not been of concern to the
practicing engineer in determining stability and control derivatives because the
problem had been exercised for so long that he had a good "feel" for it. As new
applications are being considered, identifiability and the closely related problem
of modeling will become increasingly important.

Other topics covered in this session include effects of instrumentation errors on
the accuracy of estimated parameters and optimizing the test input. Both of these
areas have been recognized as important for many years, but only recently have
they been treated in this fairly rigorous manner.

Session VI, Special Applications, is a collection of papers treating some of the
intriguing new developments and applications of parameter estimation technology.

Systems identification is an integral part of adaptive control from a theoretical
viewpoint. To develop an optimal or near optimal control law for an aircraft oper-
ating throughout a wide range of flight environmental conditions that affect its static
and dynamic response, it is necessary to identify its characteristics on-line. The
so-called optimal adaptive systems (ref. 36) are complex and have not been consid-
ered practical to implement.

An adaptive control paper is presented for two reasons: It represents an impor-
tant class of applications of parameter estimation; and it presents a technique for on-
line parameter estimation that not only provides for a practical implementation of an
adaptive system but also could be used for rapid on-line analysis of flight-test data.

Two papers consider the problem of determining aircraft structural mode param-
eters. This is going to become an increasingly important area of research and de-
velopment because of the need for structural modal suppression systems on large
supersonic aircraft. Three recent, independent, unpublished studies for NASA by
Boeing, McDonnell Douglas, and Lockheed on advanced supersonic technology all



stated that an advanced supersonic transport should be designed with a structural
modal suppression system to provide for passenger comfort. The need to define the
structural mode characteristics precisely is pointed out in reference 37. Small un-
certainties in the structural mode characteristics can cause unacceptable system
performance,

The last paper discusses another problem area that can affect supersonic air-
craft with sophisticated propulsion systems. Forces induced on the airframe by
operation of the engine inlets can cause unfavorable effects on the aircraft dynamics,
Interaction among the propulsion system, flight control system, and airframe must
be better understood so that the aircraft stability, control, and performance can be
optimized simultaneously over the entire operational envelope of future advanced
supersonic aircraft.

FUTURE POTENTIAL

The future effect of applying parameter estimation techniques to aircraft flight
testing is anticipated to be twofold: It should reduce the overall schedule of a flight-
test program and at the same time increase the amount of information extracted from
the tests. Figure 6 depicts these benefits qualitatively. The quantitative improve-
ments are yet to be determined.

The reduced schedule is expected to result from savings in analysis time,
through more effective methods; flight time, through use of dynamic tests in place
of the more time-consuming quasi-static tests, such as those used in measuring
lift/drag polars; and preparation time, by not requiring special instrumentation for
each research task. These savings should result in lower flight-test costs.

Several papers in the symposium show the trend toward increased information
output. Data previously discarded because of turbulence contamination are now
usable. It should be possible to use a single dynamic maneuver to obtain lift and
drag as well as stability and control coefficients. With further improvements and
refinements, other combinations may be possible, such as determining structural
modes, turbulence, and stability and control characteristics simultaneously.

In view of the capabilities and potentials of parameter estimation techniques,
flight-test engineers should reevaluate the test procedures and instrumentation
that have been used for many years. It would be interesting to see what innovative
approaches might result.
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A SURVEY OF AFFDL PARAMETER ESTIMATION
EFFORTS AND FUTURE PLANS

By Capt D. C. Eckholdt
Air Force Flight Dynamics Laboratory

And Dr. W. R. Wells
University of Cincinnati

SUMMARY

This paper presents an overview of the applications of parameter estima-
tion methods to the following areas of interest at the Air Force Flight
Dynamics Laboratory (AFFDL):

1. Conventional stability and control parameter estimation of "rigid"
aircraft.

2, Extension to elastic aircraft.

3. Extension to stall/spin aerodynamicé of "rigid" aircraft with a non-
linear model.

4. Application to the pilot model identification.
5. Correlation of wind tunnel, drop model and flight test data.

Currently, only well-documented algorithms are being used with modification to
the model as required for the specific application.

The intent is to present the genesis of each problem and other background
information which will enumerate the algorithms and explain how this informa-
tion is used to improve existing operational aircraft characteristics as well
as specify design criteria for future USAF aerospace vehicles.

INTRODUCTION

Over the past several years the Air Force Flight Dynamics Laboratory has
renewed its efforts in the area of parameter identification and estimation.
Several factors are involved in this renewal of effort. One is the fact that
the evolution of analytical capability and computational facilities make
possible what, in the past, would have been a most difficult, time consuming
task or just a dream. Another factor involved is the increasing necessity,
with the enormous cost of the development and flight test of modern weapon
systems, for more complete and accurate analyses of new aircraft. Parameter
identification, of course, plays a vital role in this more comprehensive
analysis program, both in identifying the characteristics of aircraft to
develop confidence in prediction procedures and in utilizing the information
in development of the aircraft and its control system.
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Several problem areas have accentuated the need for parameter identifica-
tion and have also increased the difficulty of the solution. One of these
problem areas is concerned with flight at high angles of attack and sideslip,
the stall/spin problem, where a strong resurgence in research activity has
resulted from an unacceptable level of accidents and incidents. Another is
concerned with the increasing prevalence of highly elastic vehicles, coupled
in many cases with complex flight control systems.

The object of this paper is to review past and present efforts of the
AFFDL in the area of parameter identification and estimation, both contracted
and inhouse. Some indication of trends of work that should be performed, and
of our planned efforts will also be given.

More specifically, the body of the paper is divided into two main sec-
tions. The first section concerns in-house and contracted work of the
'WADC and the AFFDL Flight Control Divisions. This section includes a summary
of the F-100A, XC-142, and NT-33A programs, as well as present parameter esti-
mation work on large angle of attack and sideslip aerodynamics,on elastic air-
craft,and on pilot modelling.The second section briefly describes the capabi-
lities and some applications performed by the Vehicle Dynamics Division of the
AFFDL., Their efforts are normally restricted to frequency domain analyses
techniques as compared to the time domain techniques employed by the Flight
Control Division.

FLIGHT CONTROL PARAMETER ESTIMATION METHODS

The F-100 A Program (References 1 and 2)

Looking back into history, it can be seen that modern aircraft and their
unique problems arrived before digital computers and usable and reliable
parameter estimation algorithms. In 1957 the former Cornell Aeronautical
Laboratory (CAL) was asked by the Aircraft Laboratory of the Wright Air
Development Center to conduct a research program on the F-100A in the tran-
sonic and lower supersonic speed ranges. Since 1944, CAL had been engaged in
full-scale stability testing of aircraft under Air Force sponsorship and had
successfully developed methods for obtaining and reducing response data to
aerodynamic derivatives. The methods employed were based on those developed
for conventional, low-speed World War II aircraft. However, they had success-
fully been applied to the unique flying wing configuration and had been ex-
tended for application on the F-80 which was an early high-subsonic turbojet
fighter., The F-100A program had to again extend the existing methods or
develop a new technique in order to test for longitudinal and lateral charac-
teristics, The flight envelope and speed regimes for this aircraft were much
larger than any other in existence, It included the transonic and lower
supersonic regimes which were virtually unexplored. The longitudinal program
was planned to obtain data which could be utilized to evaluate all the deriva-
tives characterizing the short period mode. In order to obtain the necessary
data, the aircraft was instrumented to measure the trim angle of attack and
stabilizer deflection, as well as pitch rate and normal acceleration response
to control input. A three-degree-of-freedom analog computer study was used
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to obtain the ranges of the dynamic-response instrumentation., Initially CAL
intended to use static data to obtain frequency response data and then deter-
mine the lumped damping and stiffness parameter in order to solve for the
damping derivatives. However, early in the static flight test it became
apparent that considerable scatter was occurring in the measured angles of
attack for trim and there was difficulty in determining the longitudinal
static stability of the airplane at transonic and supersonic speeds. Thus,
another method of obtaining and reducing the data was required. By considering
the low short-period damping developed by the aircraft and the irreversible
hydraulic boost control system for the all-movable horizontal stabilizer, it
was found that the pilot could apply control pulses such that oscillation data
suitable for analysis by the time vector method could be obtained. This re-
sulted in the calculation of only an approximate value for the static longitu-
dinal stability derivative and, hence, only a "lumped" value for the longitudi-
nal dynamic derivatives. As a result, the predicted values and those reduced
from flight test were not in complete agreement. However, the variations with
Mach number and altitude were consistent. For the lateral tests, the time
vector method was used to obtain solutions of the side force equation in

order to obtain a position error calibration of the sideslip vanes. A five
degree of freedom simulation was used to verify the form of the equation and
to obtain the ranges of the dynamic response instrumentation. However, the
main computations were accomplished from an equation of motion analysis method
with a least squares averaging technique on a digital computer, The reason
for this was the possibility of non-linear responses occurring in the tran-
sonic speed range. It was necessary that the form of non-linearity be known
or assumed and the coefficients be constant. For the F-100A program the
equations were originally written in a linear form with a least squares averag-
ing performed to obtain the most probable values of the derivatives. Thus,
the technique used consisted of substituting enough values of the variables in
the assumed form of each of the equations to obtain a set of simultaneous
equations which could be solved for all the unknown coefficients, namely the
stability derivatives. Again complete agreement of the experimentally deter-
mined stability derivatives with predicted values was not obtained. Although
the variations of the derivatives with Mach number and altitude were consis-
tent. Time history calculations for the lateral-directional aircraft respon-
ses using the flight test stability derivatives showed excellent agreement
with the reduced flight test responses. Moreover, the tests confirmed that it
would be possible to extend the range of testing to higher speeds by analyzing
data taken from a diving aircraft rather than one flying straight and level.
It is interesting to note that aeroelastic effects and gyroscopic effects of
the engine were encountered but not adequately modelled.

The previous example was used to define WADC's involvement in aircraft
identification in the late 1950's. It should be emphasized that the old
Flight Control Laboratory or the current Flight Dynamics Laboratory are not
normally involved in flight testing or data reduction for stability and con~
trol derivatives. However, the Laboratory has always been involved in new
and unique applications. '
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The XC~142 Program (Reference 3)

The next example considers the problem of obtaining the aerodynamic
stability and control derivatives from the XC-142 airplane and the correla-
tion of wind tunnel and flight test data. This study was performed in the
late 1960's for the Air Force by LTV Aerospace Corporation. The results of
the study were somewhat restrictive due to the flight data package used. The
data were obtained from the Category I test program which is primarily a
qualitative rather than quantitative evaluation of the aircraft. Not only
was the quality of the data unsuitable, but it was impossible to estimate the
control effectiveness in low speed flight. This hampered the accurate deter-
mination of the basic airframe characteristics. Thus, one of the major recom~
mendations made as a result of this effort was that future programs include a
critical review of the instrumentation system and flight maneuvers in order to
obtain the best possible data for determining the low speed flight aerodynamic
characteristics. ’

Another major obstruction was the inability to satisfactorily correlate
the wind tunnel data obtained from tests of three models of the XC~142A air-
plane in four different size test sections. Again, the flight evaluation
program was mainly aimed at pilot evaluation of the handling qualities of the
aircraft. However, the instrumentation in airplanes No. 1 and 2 was suffi-
cient in terms of the necessary variables measured for the purposes of para-
meter identification. The airborne data recorded was accomplished with a
pulse duration modulation (PDM), tape system, camera coverage of cockpit
control panels, and pilot and co-pilot verbal reports. The sampling rate of
the PDM system was 10/sec and 20/sec. On certain flights, multiple gyro
instrumentation, with different sensitivities, was available for comparison
checks. In general, the flight data obtained during the program exhibited
high frequency noise and/or vibration content, thus it was necessary to pro-
cess the flight data through a numerical or digital filtering routine.

A least squares method was used to perform the data reduction. Basically,
the mathematical model was fitted to the flight data where the criteria for
obtaining the fit was the minimization of the squared error between the flight
data and the model response. The model represented the uncoupled longitudinal
and lateral-directional motions and was made up of only those variables which
would be excited independently during a maneuver. The variables that were not
excited during a particular maneuver, and those that were considered propor-
tional to another variable, were eliminated from this general set-up by input
specifications to the computer for each set of data. These normal equations
also contained a constant coefficient which represented the total bias that
may have resulted from errors in selecting trim or null values of the flight
variables from which perturbations are taken for a particular maneuver,

The digital computer routine used for the least squares solutions was
checked by determining solutions for "exact" time histories of assumed linear
models obtained from established inverse Laplace routines. A comparison of
the original or assumed aerodynamic coefficients with the least squares solu-
tions was satisfactory to three or more significant digits for the important
derivatives, the less significant derivatives being slightly less accurate.
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The fact that the computed time histories were determined by single precision
arithmetic would account for this difference. Single precision arithmetic was
utilized in the least squares routine used in this program since aerodynamic
models with six or fewer coefficients were selected. It was found that the
least squares method lends itself readily to the type of flight data which
were generally available for this study; i.e., continuously controlled maneu-
vers.

This study also used analog matching techniques independent of the least
squares analysis to check the results obtained for the longitudinal, cruise
configuration flight case. The particular flight maneuvers were pilot-forced
sinusoidal oscillations, The unit horizontal tail time history was generated
for the computer input forcing function and the aerodynamic derivatives were
adjusted until the output traces for the variables matched the measured flight
time histories.

Results from this study clearly indicated the need to plan the flight
test program in such a way as to gather usable data. Due to high noise con-
tent, the flight data available were not of suitable quality to allow a high
degree of confidence in inverse solutions for aerodynamic derivatives, except
perhaps for predominant effects such as control effectiveness in the transi=
tion flight regime. Furthermore, the flight data available did not include
controls fixed maneuvers which would have eliminated the predominant effect
of control effectiveness in low speed flight and would have enabled more
accurate determination of the basic airframe characteristics (neglecting in-
strumentation noise or accuracy limitations).

This study suggested the following recommendations to improve future
efforts aimed at determining the aerodynamic stability and control derivatives
for V/STOL aircraft from flight data:

1. Instrumentation systems should be critically reviewed to assure the
necessary accuracies required for the determination of low speed flight aero-
dynamic characteristics. If sampled data systems are to be used, sampling
rates of at least two times the highest vibration frequency of the airframe
should be obtained, or some combination of high frequency electrical filters
and high sampling rate be employed.

2, The sensors in the instrumentation system, particularly accelerom=-
eters, should be isolated from high frequency vibrations to the extent
possible, by consideration of both location and local mounting.

3. Specific flight tests should be defined for obtaining the best
possible data for isolating the aerodynamic effects. Due to the inherent
instability or very low stability of V/STOL airplanes in low speed flight,
maneuvers such as pilot forced sinusoidal oscillations appear to be the best
means for obtaining good amplitudes in control inputs, angular rates, and
acceleration responses while allowing the pilot to maintain a higher confi-
dence in his control of the aircraft, Controls fixed maneuvers, Or responses;
i.e., stabilization augmentation inactive as well as stick fixed, should be
obtained in all flight conditions where safety permits in order to eliminate
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control effectiveness in the response and thus better isolate the remaining
aerodynamic effects.

Based on the above study's recommendation AFFDL contracted with LIV
Aerospace Corporation to do a detailed analysis on V/STOL flight test instru-
mentation requirements which would be aimed directly at the problem of extrac-
tion of aerodynamic coefficients. The results are reported in reference 4.
Briefly, curve fitting the equations of motion by multiple linear regression
(least squares) was selected as the best method of analyzing flight test time
histories in order to extract aerodynamic coefficients. This algorithm had
the most established statistical credentials; is easily programmed on digital
computers; can handle non-linear equations; and uses digitized data which can
undergo extensive preprocessing for error elimination before analysis is begun.
The following types of instrument introduced errors were investigated:

® Gaussian distributed random noise

® High frequency sinusoids, simulating elastic modes or faulty instrument
demodulation

® Instrument calibration slope errors
® Constant bias increments

® A time delay simulating a high order Butterworth filter or end instrument
"stiction"

® A time lag through a lag filter or servo.

The following results were indicated:
® Gaussian distributed random noise of a known distribution.
® The numerical technique developed was effective,

® High frequency sinusoids. Digital filtering removed all the adverse
effects.

® Instrument calibration slope. Error could be corrected accurately as
soon as discovered because of the linear relation between calibration and
error on associated coefficients.

® Constant bias removed automatically by the least squares method.

® The time delay could be removed exactly for one frequency input and com-
pensated adequately for multiple frequency inputs by a combination of Fourier
analysis and Laplace transormation.

® The time lag could be compensated adequately by use of Fourier analysis
combined with Laplace transformation.
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Thus, before one can state categorically that an instrument is inadequate,
he should first ascertain to what extent he can compensate the output when he
knows the instrument characteristics.

Further, the study showed that the effect of most of these errors, for
instrument accuracies attainable at the present estimated state of the art,
was to degrade the data unacceptably. By judicious preprocessing, useful
data can be retrieved and good coefficients extracted. The preprocessing
requires knowledge of the instrument characteristics as established by test.

Instrumentation requirements, which would satisfy flight test measure-
ments and final reduced data "accuracies" such that the desired derivatives
could be extracted, were established after a thorough investigation and appear
in Table 1. Furthermore, the data of Table 2 illustrates the "target accura-
cies" for V/STOL instrumentation which must be achieved in order to optimize
the instrument characteristics for derivative extraction purposes.

Finally, this analysis revealed that compensations for known instru-
mentation inaccuracies could be developed that would result in acceptably
small errors in the aerodynamic coefficients. This indicates that the effort
spent in testing to learn the nature of the instrument is as important as the
continuing attempt to develop the more nearly perfect instrument.

The NT-33A Program

Although AFFDL has not sponsored all the applications work of applying
different parameter identification methods to our variable stability NT-33A
aircraft operated by Calspan, this extensive effort should be mentioned be-—
cause of its significant contributions tothe efforts of the AFFDL. Obviously the
unaugmented, bare-airframe stability and control parameters must be known as
accurately as possible, if the NT-33A is to be augmented using feedback tech-
niques to simulate the characteristics of another aircraft or perform preci-
sion flying qualities experiments. As a result Calspan has employed every
known computational technique to solve this problem, in fact, the NT-33A must
be the most identified aircraft in the world. To date they have employed:

Frequency response Kalman filtering

Analog matching Quasi linearization (maximum likeli-
hood)

Least squares Differential correction method.

Most of the results are published in the proceedings of the National Elec-
tronics Conference which was held in 1969 or in assorted Calspan and AFFDL
technical reports.

For instance, reference 5 presents a method of matching the aircraft
responses in terms of modal parameters instead of stability and control deri-
vatives. The fundamental advantage of this formulation is the reduction of
the number of parameters which must be matched and the guidance which is
available on how to adjust the parameters. The results presented for this
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problem, roll rate response to an aileron step input, are very accurate.

In reference 6 the least-squares method or Equations-of-Motion Method is
applied to the variable-stability T-33 airplane. Here it is reported that in
order to properly extract the stability derivatives for either the basic air-
plane or simulated airplane, it was best to use a set of non-linear small per-
turbation equations. From the study it was determined that some of the non-
linear kinematic and aerodynamic terms in the lateral-directional equations
are as important as some of the small linear terms. These non-linear effects
were modelled by retaining some second-order terms in the perturbations and
their coefficients. The report also stressed that the extracted derivatives
and response data may fit the equations well, yet the values for some or all
of the extracted derivatives may be poor because of unknown errors in the cali-
bration constants. Thus, one of the important results was a reasonable 'good-
ness-of-fit criteria" which was established in the form of computed error co-
efficients. The application to the lateral-directional T-33 flight data was
reported to have been accomplished with some success. It was suggested that
the procedures and methods have general validity and could be applied to longi-
tudinal motions, or a complete six-degree-of-freedom system,

In a separate report, reference 7, in-flight evaluation of certain lateral
directional handling qualities of high performance aircraft is investigated.
In particular, the landing approach task and the phenomena of decreasing direc-
tional stability during supersonic cruising flight is studied. An essential
part of any handling qualities evaluation program is the identification of the
stability parameters simulated in flight. Only with in-flight identification
i1s there assurance of the configurations actually simulated. Pilot ratings
can then be related to the measured stability derivatives. 1In this program,
considerable effort was required in the analysis of flight test data to insure
proper parameter identification. Rudder doublet responses were used to identi-
fy frequency, damping ratio and roll to sideslip ratio. These parameters and
certain stability derivatives such as the dimensional yawing moment derivative
with respect to the aileron control deflection were also identified by the
Equations-of-Motion method and showed reasonable agreement with the results
obtained by other approaches,

Reference 8 reports an effort to ildentify alrcraft parameters using Kalman
filtering. Basically raw T-33 flight test data involving sideslip angle, roll
rate, yaw rate, and roll angle response to an aileron step deflection was
operated on by a Kalman filter to estimate eleven parameters which define the
lateral-directional equations of motion. This study indicated the feasibility
of using Kalman filtering technlques as a means of both off-line and on-line
parameter estimation. In particular, results indicated that the filter was
capable of converging to a set of parameters which can be used to define an
off-line model of the lateral motion; and that the filter can be used during
on-line control to feedback the states and to update the model parameter.
Based on the results of the study several operational suggestions were put
forth:

1. Use the first 10-20% of the data to obtain an initial estimate and
covariance matrix via a least square fit. Kalman filtering should be performed
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on only the last 80-90% of the record.

2. At the end of each iteration try replacing R by the matrix of the
averaged squared errors when convergence is close.

3. Investigate the effects of increasing the elements of the P matrix to
see if there is an upper limit beyond which no benefit is attained.

4, Study the effects of assuming plant disturbances. This could possibly
compensate for approximations made in the linearization procedures.

5. Analytically study the effects of incorrect values for Q(0) and R.

Reference 9 describes the combination of historical mathematics with the
high-speed digital computer capability to produce an efficient device of
searching for unknown parameters existing in a set of algebraic or differen-
tial equations, namely, the CAL computer program which uses the theory pro-
posed by Bellman and Kalaba (ref. 10). This study describes a search tech-
nique to solve for a vector ¢ (components of which are the set of unknown ini-
tial conditions and the unknown parameters of the given set of differential
equations) that minimizes the equation

NP NK
s() = I alei(x(e1)) - Y402
i=1 j=1

where )j are relative weights of NK differential functions gj(X(t)) and

(gj(X(ti)) - in) represents the error between the mathematical model and test
data., The initial estimate of vector c was obtained by using spline functions.
An example problem was applied to the T-33 flight test data for the lateral-
directional case. The results indicated the feasibility of using this method
of quasilinearization for solving the aircraft estimation problem. In fact,
simplicity of application and speed (about 12 minutes to solve the example
problem) appear to be some of the values of this technique. Further use and
application of the Quasilinearization Method are reported in reference 11.

A final method applied to the NT-33 aircraft reviewed is that proposed in
reference 12, Here a method is developed for the deterministic case in which
the parameter estimates are obtained by minimizing a criteria function which
is quadratic in the difference between the measurement vector and the model
output vector. The differential correction method is best emploved as an off-
line parameter estimation method since it employs an iteration procedure. It
applies to nonlinear differential equations, but for the example cases, Dolbin
assumed linear, constant coefficient, differential equations. The data used
in the example problems presented in the paper were measured in an airplane
equipped with an automatic control system capable of altering the airplane
parameters,

In particular, the algorithm was used to estimate the stability deriva-
tives associated with the short period characteristics and the modal parameters
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associated with the lateral-directional transfer function of the roll rate
response due to an aileron deflection. The results indicated that the
differential correction method is entirely suitable to the estimation of air-
plane parameters from flight test data, The quality of the fit between the
measured data and the outputs of the mathematical models was generally excel-
lent. The parameter estimates were accurate whenever the measured responses
contained sufficient information to provide adequate sensitivity of the
criterion function to parameter changes,

Present and Future Programs

The previous section serves as a transition to that time period where
AFFDL is applying modern estimation theory to obtain solutions to unique
modelling and identification problems, Most of the activity for both inhouse
and contracted efforts have been accomplished in the Control Criteria Branch
of the Flight Control Division, in particular, the Aircraft Dynamics and
Control Analysis Groups. The former group is charged with the mission of
solving the stall/spin/loss-of-control problem exhibited by so many of the
Air Force's high-performance fighters and developing a technical capability
to handle aeroelastic stability and control problems associated with high
performance vehicles. The latter group is involved in identification of
stability and control parameters and pilot modelling. The following paragraph
presents a review of their efforts,

Post Stall Characteristics

In order to eliminate an unacceptable number of flight accidents and in-
cidents, the AFFDL has begun an Advanced Development Project concerned with
solving stall/spin/loss-of-control problems. One portion of this project con-
cerns correlating high angle of attack aerodynamic stability and control char-
acteristics extracted from available full-scale flight test and free-flight
drop model test data of current high performance aircraft.

As part of the effort, Calspan was awarded a contract in March of 1972 to
correlate data available on existing high performance aircraft. The F-4, F-5,
and F-111 aircraft were considered as possible study vehicles. Only the F-4
aircraft was selected however, since it has flight test, drop model, and wind
tunnel, high angle-of-attack, post-stall data available,

To date, Calspan has formulated a mathematical model for the aerodynamic
functions using a polynomial least squares fit in angle of attack and sideslip
angle to approximate the F-4E wind tunnel data, Currently, time histories
from a six degree of freedom simulation, developed from the wind tunnel data
fit, are being matched with available flight test time histories. A raw data
tape containing suitable flight test runs for the F-4E was acquired via a sub-
contract to McDonnel Douglas and has been segmented according to Mach number
and angle of attack characteristics to aid in the identification of the aero-
dynamics. Instrument consistency checks have been made on the flight test
data and the information is being used in conjunction with an initial identi-
fication of the flight data by a least squares technique. These results will
provide the start up estimates for the Iterated Kalman Filter Program.
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Correlation between the identified parameters from the drop model
data and the wind tunnel data are nearly completed and the correlation appears
very good. Calspan will present a more detailed paper later in the symposium
(ref. 13).

During this same time period, an independent in-house effort was
begun to study the feasibility of a maximum likelihood approach to the extrac-
tion of stability derivatives from an assumed non-linear aerodynamic model
(ref. 14). This effort was supplemented by an Air Force Institute of Techno-
logy (AFIT) Master's Thesis project (ref. 15) in which a NASA/LRC computer
program (ref. 16) was modified to handle the non-linear identification problem
associated with high angle-of-attack flight. The program has successfully
been applied to the F-4 low angle of attack data and is currently being
checked out with the non-linear model of the F-4 aircraft. Their results will
be presented later as an alternate paper (ref. 17) if time permits.

Finally, a new contract through the AFFDL Stall/Spin Advanced Develop-
ment Program office with Atkins and Merrill, Inc to build and test several
3/10 dynamically scaled drop models of the light weight fighters have been
awarded. This experimental program is designed specifically to develop a
proper instrument package, flight test program, and data reduction procedure
in order to extract the high angle of attack stability and control character-
istics of the model.

Elastic Aircraft

Previous efforts to identify the parameters of elastic aircraft have
concentrated on the frequency domain analysis techniques. These techniques
are required if the frequency-dependent, unsteady aerodynamic methods employed
in flutter analyses are to be improved. With the development of more highly
aeroelastic aircraft, the coupling of the structural dynamics with the control
system dynamics has necessitated a less complicated approach to the unsteady
aerodynamics than the frequency domain approach. These approximate tech-
niques, developed primarily for stability and control and flight control appli-
cations, employ a "stability derivative" representation of both the steady
and unsteady aerodynamics that affect the body-fixed axis motions and the
elastic deformations, The reduction of aerodynamic forces to '"derivatives"
leads immediately to the suggestion that the modern, time domain parameter
estimation methods be used to analyze the flight test data of flexible air-
craft.

A study has begun at the AFFDL to determine the feasibility of
applying the modern estimation methods to elastic aircraft. The results of
the study by Schwanz and Wells (ref, 18) will be reported in another paper
of this symposium. Briefly, the study considered six different formulations
of the dynamics of elastic vehicles and selected the MODAL TRUNCATION formula-
tion as the most promising. Asimilar review of the "Equation Error",'"Output
Error", and "Advanced Methods" resulted in the selection of the advanced
parameter estimation method referred to as maximum likelihood. Once the
dynamics of the elastic aircraft and the sensor equations are defined, and
the maximum likelihood method is selected, a computational algorithm may be
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developed. An examination of the algorithm, reported in reference 18, indi-
cates the major computational problems are the inversion of large sized
matrices and the time-wise integration of a large number of sensitivity
equations. The study has now moved to the second phase in which a computer
program called FLEXFLT is being developed in-house at the AFFDL. Analytical
test cases as well as the B-52E CCV flight test data are to be used to
demonstrate the method prior to applying it to other USAF flight test pro-
grams such as planned for the B-1 aircraft.

The AC-130 Gunship Program

Since February 1972, the Control Analysis Group has supported an in-
house effort to develop computer programs designed specifically to find the
stability and control derivatives of the AC-130 Gunship aircraft which is
equipped with the Sight-Line Auto-Pilot (SLAP) to fly a trimmed 30° bank
angle configuration (see reference 19). The dynamics of this configuration
are represented by six degree of freedom, linear, coupled perturbation equa-
tions which contain a maximum of 31 unknown parameters, To solve this identi-
fication problem, three digital computer programs are utilized, the first two
of which have been developed in-house:

Least squares program.
Maximum-Likelihood-Kalman Filter program.
Newton-Raphson program.

The Least Squares program is very effective when applied to cases
where there is no measurement noise on the data and where there is an ex-
tended amount (i.e., derivatives of all states) of data available. However,
for this purpose, Least Squares was written to be used as a start-up routine
(i.e., it provides an initial estimate of the unknown parameters) for the
Maximum Likelihood-Kalman Filter (MLKF) program.

The MLKF program is based on the algorithm presented in a paper by
Mehra, Stepner, and Tyler (ref. 20). The program was written, using VASP
(Variable Automatic Synthesis Program) subroutine, to handle the general,
linear, fixed coefficient system with noise in the system and in the measure-
ments. For the general case, it acts as both a state and parameter estimator.

The Newton-Raphson program was obtained from NASA Langley, It is
to be used as an alternate method for identifying gunship derivatives. The
results of this effort are not known as of yet since the aircraft has not
been flight tested.
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Pilot Modelling

Another in-house application of parameter identification techniques
which appears to have a large pay-off is in the area of pilot modelling. 1In
particular, Durrett and Pope have formulated a method of identifying pilot
model parameters from experimental data, It is based on a state space repre-
sentation of the pilot model which includes, as subcases, the various forms
of the classical pilot models (ref. 21). Given measurements of the pilot
output, time rate of change of output, and observation of an aircraft (or any
linear system), the general computer program developed by Pope (ref. 19) for
identifying linear system parameters can be utilized to identify such model
parameters as pilot gain, lead, lag and time delay. Identification of these

pilot parameters provides valuable information for the further development
of some of the pilot-in-the-loop analysis techniques, for example, the Paper
Pilot. Recently the AFFDL and AF Human Resources Laboratory have started

a joint in-house program to identify the human operator in the closed loop
situation for single or multi-loop feedback tasks,

Finally, two practical applications of this technique should be men-
tioned. The first is a joint program between AFFDL and the Aero Space Medical
Division, Brooks AFB, Texas where pilot modelling identification methods are
being used to aid in the evaluation of a pilot's capability to complete his
mission once he has been exposed to a high level of nuclear radiation. The
experimental portion of the study involves trained monkeys who fly a two-
degree of freedom platform. Data is recorded before and after radiation
exposure, Temporary loss of control is experienced, however, the effects
change with time. Through parameter identification methods, it is hoped that
the non-linear monkey operator model parameters can be extracted from the
experimental data. These results will then be used in the "Paper Pilot"
digital computer program in order to determine the degradation in closed loop
flying qualities which has occurred due to radiation.,

The second practical application involves data which were recorded
during a handling qualities experiment being accomplished on the Air Force's
Total In-Flight Simulator (TIFS) aircraft. In particular, an SST type confi-
guration was flown to evaluate landing characteristics of the unaug-
mented aircraft. At the same time data was recorded to obtain a closed loop
set of time histories of stick response, display error, pilot output, and
plant output. The data is being processed in the pilot modelling identifica-
tion program in order to obtain a pilot model for the SST type aircraft which
can then be used to predict handling qualities.

VEHICLE DYNAMICS PARAMETER ESTIMATION METHODS

The Dynamics Technology Applications Branch is responsible for develop-
ing techniques and equipment for the measurement and analysis of experimental
dynamics data. These capabilities are required to evaluate and assess the
accuracy of analytical prediction methods and to accurately describe the
operating environment for flight vehicles,
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In the analysis area, a new high speed digital analysis system is now
completing final acceptance testing. This system will provide the capability
for performing the following analyses: amplitude spectra, power and cross
power spectral density, auto and cross correlation, coherence, transfer and
mechanical impedance functions, transient analysis and digital filtering.

A recent advancement in measurement technology by this organization is
the development of an automatic gain control amplifier system for airborne
flight test use. This system automatically provides the amplification neces-
sary to maintain data signal levels in the optimum range for a tape recorder
system. The gain status of each amplifier is sampled by a commutator system
and recorded on a single tape recorder channel for recovery during data analy-
sis,

Typical of system support efforts now being conducted is a test program
in support of the Air Force Weapons Laboratory (AFWL) to determine the aero-
dynamic and acoustic environment of the F-111 bomb bay. In addition, a test
program is also being conducted in support of the AFWL to determine the acous-
tic environment in the vicinity of high output laser devices. This program is
being conducted to assess the potential safety hazards for personnel working
near these lasers and to identify acoustic excitation levels which could cause
misalignment of highly sensitive optical equipment.

Typically, an aircraft test program consists of instrumenting the vehicle
with transducers at specific locations to measure vibration, sound, tempera-
ture, pressure, or strain. The test vehicle is then operated at various con-
ditions and the output of the transducers are recorded on an airborne tape
recorder. The tapes are then returned to the laboratory for playback and
analysis. The data are analyzed with the digital analysis system and are
presented in the form of engineering plots. To date, data from these test
programs have been used to update test specifications, provide equipment
design criteria, verify prediction methods for rotor powered V/STOL and high
performance aircraft, refine the ground induced dynamic loads criteria, in-
vestigate methods of increasing damping and decreasing response, provide data
for human factors studies, determine the effects of transients, e.g., gunfire,
the response of external stores to vibration excitation and the aural detect-
ability of limited-war aircraft.

Obviously, the expert instrumentation capability and high quality data
processing equipment are a valuable resource to the Laboratory and will play
an important part in any new major application of parameter estimation to
identify stability and control parameters on rigid and elastic flight vehicles.

CLOSING COMMENTS

The main emphasis in this paper has been to relate the role of the AFFDL
in the development of ai:craft parameter estimation theory from the classical
graphical approaches of the post World War II days to the modern theory of
today which involves sophisticated mathematical analyses and liberal use of
the digital computer. This paper no doubt has caused the reader to reflect
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back on his own experience and to see the progress and failures of past efforts.
As has been noted, many of the basic problems associated with instrumentation
packages, flight test plans, and data reduction have still not been completely
solved.

Experience has proven that all aspects of the flight test program must be
considered simultaneously using a systematic approach to integrate the differ-
ent disciplines. Furthermore, the consolidated effort must be made very early
in the initial design stage of an aircraft development program, if one intends
to correlate wind tunnel, drop model, and flight test data. Trying to make
things fit together after the fact becomes a very difficult task. The Navy
is taking a step in the right direction on their T-2B program. It is speci-
fically being designed and conducted to optimize the possibility of success-
fully extracting the stability derivatives. AFFDL is currently suggesting
such an approach to the B-1 program and has already formulated such a plan
for the AC-130 Gunship.

The Laboratory will continue to attack unique new applications of esti-
mation theory when problems arise and constrain mission accomplishment. Our
goal remains that of possessing the technical capability to solve the stabi-
lity and control or handling qualities problems on any aerospace vehicle.
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RESUME OF MEASUREMENT REQUIREMENTS

TABLE 1.
lo
accuracy
Roll Attitude 1/2°
Pitch Attitude 1/2°
Heading 1/2°
Roll Rate 0.15°%/s
Pitch Rate 0.15°/s
Yaw Rate 0.15°/s
Normal Accel 0.02g
Long Accel 0.02¢g
Xvrse Accel 0.002¢g
Pitch Accel 0.5%FS
Roll Accel 0.5%FS
Yaw Accel 0.5%FS
Aileron Pos 0.4°
Flap Pos 0.4°
Wing Incidence 0.4°
Horizontal Tail Inci-
dence 0.4°
Main Prop Blade Angle 0.4°
Tail Prop Blade Angle 0.5°
Propeller RPM 0.5%
Rudder Position 0.4°
Engine Shaft Torque 27
Alrspeed 5K

fo
(CPS)

6

6

SPS
256
256
256
256
256
256
256
256
256
128
128
128
128

64

64

64
64
64
64
128
32

64



23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

TABLE 1. RESUME OF MEASUREMENT REQUIREMENTS (Concluded)

Angle of Attack 5.0%
Angle of Sideslip 5.0%
Free Air Temp 2°F
Pressure Alt. 10 feet
Height Above Ground 5.0 feet
Vert. Velocity 2 ft/sec
Lateral Velocity 2 ft/sec
Long Velocity 5 ft/sec
Direct Thrust 3.0%
True Airspeed 3.0 Knot
(computed

Time N/A
Camera Command N/A
Shutter Response N/A

N/A
N/A

N/A

128
128
64
32
128
128
128
128
32

32

As Req'd

As Req'd
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TABLE 2. STATE-OF-THE-ART ACCURACY TARGETS - V/STOL
INSTRUMENTATION SYSTEM

FUNCTION TARGET ACCURACY (% F.S.) EST CH FREQ
RESPONSE
ATTITUDES 0.2% 3 CPS
ANGULAR RATES 0.3% 3 CPS
ANGULAR ACCEL 0.5% 3 CPS
LINEAR VELOCITY 0.5% 3 CPS
LINEAR ACCEL 0.5% 10 CPS
ANGULAR POSITION 0.5% 2 CPS
ANGLE OF ATTACK 3.0% 3 CPS
ANGLE OF SIDESLIP 3.0% 3 CPS
AIRSPEED 1.0% 1 CPS
ALTITUDE 2.0% 1 CPS
FREE AIR TEMP 0.5% 1 CPS

DIRECT THRUST 2,0% 3 CPS



NAVY PARTICIPATION IN THE DEVELOPMENT OF AIRFRAME PARAMETER
IDENTIFICATION TECHNIQUES

By

Roger A. Burton, Naval Air Test Center, and
Arthur J. Schuetz, Naval Air Development Center

ABSTRACT

The Navy is currently involved in the development of advanced
parameter identification techniques for use in aircraft flight
testing and refinement of aircraft dynamic systems modeling. This
paper will present an overview of the Navy's research programs,
capabilities, and facilities. The use of parameter identification
techniques will be related to the flight testing, development,
and simulation of aircraft and aircraft systems in the areas of
flying qualities, automatic flight controls, flight dynamics, and
advanced landing systems. Preliminary analytical and flight test
results will be presented. The impact that new parameter
identification technology will have on Navy flight test philosophy
is discussed. Future plans will be outlined.

NAVAL AIR DEVELOPMENT CENTER (NADC)

An awareness of two substantial technological gaps has
motivated the recent NADC interest in parameter identification.
Extensive experience with computer-driven simulations of aircraft
has shown that sufficiently complete and accurate stability and
control data do not exist for many current aircraft, especially
for high angle of attack flight conditions. In addition, no
reliable method has been found for evaluating the in-flight
simulation fidelity of a variable-stability aircraft.

Recognizing that parameter identification technique development
has suffered from a lack of complete, high quality flight data
for processing, NADC began a research program emphasizing the
generation of such data by the NADC YT-2B. This program includes
a flight data acquisition and reduction phase, a parameter
identification phase utilizing the flight data, and an identified
parameter evaluation and verification phase.

The flight test data were obtained from a specially instrumented
YT-2B airplane operating at NADC. The aircraft has been equipped
with twenty-four separate position and motion sensors. These
include altitude, pitch and bank angles, angles of attack and
sideslip, airspeed, three angular velocities, nine strategically
located linear acceleration measurements, and five control
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deflections. Roll, pitch, and yaw angular accelerations are
computed from linear acceleration data. For this project,
aircraft response information was generated for three flight
conditions, defined in Table I. A variety of carefully planned
pilot control inputs were used. To aid in the estimation of
measurement error statistics, one minute of information was
recorded with the aircraft standing still on the ground with
engines running. For many runs, every effort was made to
minimize the external disturbances such as turbulence or gusts.
In addition, moderate turbulence data are available to assess
the effect of process noise on the parameter identification
schemes.

For the current study, only the longitudinal data in the
low angle of attack range are utilized for parameter identification.
The identification schemes being employed include a modified
Newton-Raphson, a specially-developed maximum-liklihood estimator,
a combined Kalman filtering/smoothing technique, and a timesharing
maximum-1liklihood estimator. For uniformity, each identification
technique is employing identical flight test data as well as
the same aircraft equations of motion (which include fourteen
unknown parameters).

In an effort to determine the relative effectiveness of the
various identification techniques, the several sets of identified
parameters will be compared with each other and with wind tunnel
data. In addition to the direct comparisons of identified para-
meters and the examination of confidence intervals and/or standard
deviations for the parameter estimates, an "untried inputs" procedure
will be used to assess the validity of the identified parameters.

A supporting effort, already in progress, will directly scrutinize
the parameter identification process implementation.

A new study, generating and analyzing high angle of attack
flight data, will soon begin. It will in many ways parallel the
low angle of attack effort, but of necessity will also include
instrumentation effectiveness analyses, identification technique
development, and modelling studies. Extensive high angle of
attack wind tunnel data for the YT-2B are being generated by
NADC for use in this program.

NAVAL AIR TEST CENTER (NATC)

The steady growth in the complexities of aircraft specification
requirements and automatic flight control systems has changed the
complexion of the requirements set upon the flight test community
for data accuracy and evaluation techniques. This change in
flight test requirements is illustrated by the new flying qualities
specification for piloted airplanes MIL-F-8785B(ASG) and the detail
specifications for the F-14A and S-3A airplanes. For example,
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MIL-F-8785B(ASG) sets new requirements for Dutch roll damping

and frequency, spiral mode, roll mode, and roll rate specifications.
The detail specifications for the F-14A and S-3A airplanes have

a new requirement in the form of the Dutch roll coupling parameter
and the Dutch roll excitation parameter. Recent requirements set
upon the Navy by the Federal Aviation Administration (FAA) in
connection with development of the microwave landing system

have increased data accuracy requirements for determining aircraft
frequency response. Existing flight test techniques are not

able to fulfill these new data requirements; therefore, a program
at NATC was established to develop airframe parameter identification
technology to satisfy these new data accuracy and evaluation
requirements.

Both classical and advanced airframe parameter identification
methods are being investigated. This approach has been taken
in order to develop a wide spectrum of experience in parameter
estimation theory and applications. Classical methods (equation
error and output error methods) that have been programmed are
least squares regression, Prony's curve fit, Fourier transform,
Z-transform, Newton-Raphson, and analog matching. These methods
have been investigated using computer generated data and flight
test data. An advanced method that is being developed utilizes
the maximum likelihood approach.

The purpose of the flight test portion of the program was
to obtain data to exercise these parameter identification methods

and to determine the proper data gathering procedures. of
primary interest was the development of physically realizable
pilot inputs that would give the best parameter estimates. Data

were gathered using step, pulse, doublet, and random pilot control
inputs and are presently being analyzed.

The successful application of parameter estimation theory
to flight test data will have a significant impact on Navy flight
testing philosophy. As data gathering and data reduction tech-
niques have become more sophisticated during the last decade
the emphasis in flight testing has been placed on the determination
of specification compliance. Thus it has become easier and
easier for the test pilot to slip away from qualitative flight
testing and become merely an extension of the data recording
system. This was illustrated by a survey of recent flight test
programs showing that 70-90 percent of the flight tests were
devoted to specification testing. The inordinate amount of time
spent on specification testing is often irrelevant, since many
specification requirements do not accurately describe the service
suitability of an aircraft. For example, the static longitudinal
stability of the F-4 aircraft in configuration PA at aft cg
positions is essentially neutral and the stick force cues to
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airspeed are thus poor. These characteristics of the F-4 failed
to meet specification requirements and using only this data it
could be concluded that the airplane would have poor landing
approach characteristics. However, pilots who have flown the F-4
are virtually unanimous in their opinion that it is comparatively
easy to maintain the optimum approach angle-of-attack during
visual approaches. The example presented simply illustrates the
fact that there are factors which we do not measure quantitatively
which affect the mission sultablllty of the aircraft. Thus the
need for qualitative flight testing is clear. Therefore, NATC is
developing parameter identification technology in order to reduce
the amount of flight time spent on specification testing.

Future plans at NATC call for a continuation of the present
effort in airframe parameter identification over the next three
years. Analytical investigations will be extended to include:

a. Development of maximum likelihood and Kalman filtering
algorithms.

b. Extension of existing algorithms to V/STOL and helicopter
parameter identification.

c. Nonlinear model identification.
d. Instrumentation error effects on identification accuracy.

The flight test phase of the program will be continued to support
the analytical investigations. A continuing effort will be

made to develop flight test applications of parameter identifica-
tion. In support of this effort it is planned to subcontract
portions of the analytical investigations.

Table I

YT-2B FLIGHT CONDITIONS AND CONFIGURATIONS
Flight Condition 1 2 3
Mach No. 0.212 0.63 0.70
True Airspeed (ft/sec) 236 679 696
Altitude (ft) sea level 10,000 30,000
Gear Position down up up
Flap Position (deg) 16 0 0
Speed Brake Position closed closed closed
Weight (1bs) 11,000 11,000 11,000
CG Position (% c) 20 20 20
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A COMPARISON OF' TWO METHODS OF EXTRACTING
STABILITY DERIVATIVES FROM FLIGHT TEST DATA
By Paul W. Kirsten and Captain Lawrence G. Ash

Air Force Flight Test Center
Edwards, California

ABSTRACT

Two methods for extracting stability derivatives from
flight data are compared. A modified Newton-Raphson quasi-
linearization minimization technique and a digital=-analog
(hybrid) matching technique were used to analyze the same data
maneuvers obtained from two aircraft. About 70 maneuvers from
an F-111E aircraft were analyzed over a Mach number range of
0.3 to 2.0 and an angle of attack range of 3 to 19 degrees.
About 20 maneuvers were analyzed for the X-24A lifting body
at Mach numbers of 0.5, 0.8, and 0.9, and an angle of attack
range of 4 to 13 degrees. Stability derivatives were extracted
from these maneuvers and the results from the two techniques,
along with wind tunnel results, were compared.

The hybrid matching math model contained complete
five-degree-of-freedom equations (no velocity derivatives) with
variable dynamic pressure, wvhereas the llewton-Raphson model used
three-degree-of-freedom ecuations with constant dynamic pressure.
The hybrid matching technique required an experienced individual
to supply the logic for the derivative extraction process.
Although the lewton-Raphson technique did not use the human
operator in the actual derivative extraction process, the effec-
tive use of the program required a comparable level of knowledge
and experience in the selection of weighting functions and use
of the a priori option.

Both techniques recuired that the source data tapes
be edited and transferred to the proper format and computer
language to be comnatible with each of the analysis programs.
This process, although recuired only once per test program,
has proven to be both frustrating and time consuming.

Both programs were found to be capable of giving
accurate results. Since Newton~Raphson tends to be less time
consuming, it is better suited for processing large quantities
of data maneuvers. Hybrid matching is more applicable for
research vehicle type programs where a limited amount of data
is processed for each flight; or for analyzing maneuvers
which are highlv coupled or transient in nature requiring
complete five-degree-of-freedom equations.
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EXTRACTION OF DERIVATIVES FROM FLIGHT DATA FOR SEVERAL AIRCRAFT,

USING THE LRC INTERACTIVE COMPUTER SYSTEM

William T. Suit and James L. Williams
NASA Langley Research Center
Hampton, Virginia

ABSTRACT

Early in 1972 a procedure for estimating stability and control parameters
from flight data, by using maximum likelihood methods employing an interactive
computer system, was established at the NASA Langley Research Center. The
system features a console where the flight data and computed aircraft motions
are displayed as the computer performs iterations to determine the best fit to
the flight data. The console operator can interact with the system in such
matters as changing the cost function, biasing the flight data, selecting
portions of the time history to be fitted, and so on.

Since installation of the system, it has been used to extract some aero-
dynamic derivatives for the Navion, XC-1h42, Kestrel, and F-8. The paper pro-
posed for this confreence will review some of the results of these studies as
well as some of the problems encountered.

INTRODUCTION

Numerous parameter-extraction techniques are available in the literature,
and some have been used to extract aerodynamic coefficients from flight data.
Most of the methods in use minimize a quadratic cost function through adjust-
ment of the aerodynamic coefficients in the equations of motion. Published
results have shown available techniques can be used to obtain good comparisons
between computed and measured flight data (states), even in the presence of
plant noise. However, published results often do not indicate the problems
which are often encountered in obtaining the good comparisons. The purpose
of this paper is to review some recent work done on parameter extraction at
the Langley Research Center. The paper will show comparisons of computed and
measured flight data for several aircraft, and will then indicate some of the
problems encountered in the process.

SYMBOLS
a, Acceleration along the x-body axis, m/sec2 (ft/sece)
a, Acceleration along the z-body axis, m/sec2 (ft/sec2)
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8 Pitch anéle, radians
The followlng symbols are used on the computer-generated figures.

ALPHA Angle of attack minus trim angle of attack, deg

AXI Acceleration along the x-body axis, m/sec2 (ft/secz)
AYT Acceleration. along the y-body axis, m/sec2 (ft/secz)
AZI Acceleration along the z-body axis, m/sec2 (ft/secg)

DA Aileron deflection minus trim aileron deflection, rad
DE Elevator deflection minus trim elevator deflection, rad
DR Rudder deflection minus trim rudder deflection, rad

P Roll rate, rad/sec

PHI Roll attitude, rad

Q Pitch rate, rad/sec

R Yaw rate, rad/sec

THETA Pitch attitude, rad

U Velocity along the x-body axis, m/sec (ft/sec)
v Velocity along the y-body axis, m/sec (ft/sec)
W Velocity along the z-body axis, m/sec (ft/sec)

The aerodynamic derivatives are given in the standard nondimensional
notation.

The Langley Research Center Parameter-Extraction System

Much of the recent parameter-extraction work at LRC has been done on an
iterative computer program using maximum likelihood techniques. The system
displays on a cathode ray tube both the flight data and the computed states
as the computer calculates the time histories of the states. The console
operator can interact with the computer at any point during the iteration
process. Figure 1 is a photograph of one of the consoles used in parameter-
extraction work. The computer program and mechanization used are described
in reference 1 and will not be discussed in this paper.
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Results From Parameter-Extraction Process

The LRC interactive digital program has been used to extract some aero-
dynamic derivatives for the F-4, Navion, XC-142, Kestrel, F-8, and Helio
Courier aircraft. Some results will be presented for the latter three air-
craft. For the cases shown, 200 to 300 data points were used in most of the
runs. Because of space limitations, less points are shown in figures.

Kestrel. The Kestrel is a vectored-thrust aircraft, and is the fore-
runner of the Harrier. The flight data analyzed were perturbations from
equilibrium conditions for each of three thrust vector angles, and at three
different airspeeds. Perturbations were generated by elevator deflections.
Typical flight and final computer-generated time histories are shown in
figure 2. The time histories compare quite well. The extracted aerodynamic
derivatives and their standard deviations are shown in table I.

ghf} Time histories of the response of the F-8 to an elevator pulse are
shown in figure 3. The calculated response compares quite well with the flight
data, and the extracted parameters are listed in table II. The extracted
parameters are compared with unpublished wind-tunnel data in figure 4. The
agreement is quite good in all cases, except for the damping-in-pitch parameter

Cng + g

Helio Courier. Flight time histories for the Helio Courier are shown for
various types of control inputs in figure 5 (elevator pulses), figure 6 (aileron
and rudder pulses), and figure 7 (elevator, aileron, and rudder inputs). In
all cases, the computed time histories matched the flight data quite well. The
derivatives are arranged to permit easy comparison of the longitudinal and
lateral derivatives for the decoupled (lateral or longitudinal) responses, and
for combined lateral and longitudinal responses.

The results shown for the above three aircraft are typical of what is
generally seen in the literature, and shows that it is usually possible to
extract derivatives that result in computed time histories that match flight
data quite well. What is not shown, however, is the fact that obtaining good
results is not a straightforward, automatic process. Problem areas that the
researcher must circumvent are left out of discussion, and only the successful
results are reported. One area of parameter extraction which seems to have
received too little attention, or at least too little documentation, is that of
mechanizing a process for identifying problems and for circumventing the prob-
lem. This includes such problems as data bias, data incompatibility, linear
dependence, and so forth. At present, our best parameter-extraction programs
are a combination of an automated system with human judgment, which reminds
one somewhat of analog-matching methods.

The remainder of this paper will discuss some of the problems encountered

during use of the LRC interactive computer system, and techniques for working
around the problems.
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Problems Encountered in Parameter Extraction

Data Compatibility. One of the common problems encountered is that of
instrument readings which contained biases, so that the measured states were
not compatible at corresponding time points. For example, in equilibrium
flight, there is a simple geometric relationship between the aircraft acceler-
ometer readings and the aircraft pitch attitude.

a

x = 8 sin 6

a
2

-g cos ©

Figure 8 shows flight data for which these relationships are obviously violated;
however, it is not clear whether the angle 6 is incorrect, or if the longitu-
dinel acceleration is incorrect. Figure 8 shows poor agreement between meas-
ured and calculated longitudinal accelerations. However, the © flight values
were picked off of the cockpit eight-ball. The 6 readings were felt to be
less reliable than the accelerometer readings because of the basic accuracy of
the eight-ball and because of a possible gyro erection problem, especially
after successive maneuvers. Therefore, the flight © was altered to be com-
patible with the measured longitudinal acceleration. The results generally
improved (fig. 9), but the match in the aircraft forward velocity deteriorated.
The next step was to bias the flight longitudinal acceleration, and the results
are shown in figure 10. Of course, as the various quantities are biased to
achieve compatibility, extracted values of trim aerodynamic coefficients will
automatically change. The point to be made is that where simple mathematical
relationships exist which can indicate compatibility of data, they should be
used, Judiciously, to eliminate biases in the data. If such relationships are
not apparent, then one must be very careful in adjusting data and making initial
estimates of the trim coefficients in order to obtain acceptable histories and
extract reasonable aerodynamic coefficients. Poor initial estimates of the
trim coefficients will sometimes result in good convergence to the flight data,
but incorrect aerodynamic derivatives will be extracted in the process. 1In
other cases, we have found that poor initial estimates of the trim coefficients
will result in divergent motion, and the computer will not iterate to a final
solution.

Much of the parameter-extraction work done recently at LRC has required
some adjustment of states and trim coefficients to initiate the iteration
process on the computer. If the program can get through one iteration, it
generally converges and exhibits repeatable behavior.

Validity of Extracted Derivatives. When flight data have been used and
aerodynamic parameters extracted, it is necessary to evaluate the adequacy of
the parameters. There are several criteria which can be used to establish
some confidence level on the numerical values. These include such factors as
how well the estimated motions fit the flight data, the incremental changes in
the estimated parameters for successive iterations, the standard deviations,
and knowledge galined from experience in estimating parameters or from wind-
tunnel work. Additional confidence can be attached to the extracted parameters
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if they can be used to predict motions for other flights with similar control
inputs. This approach is illustrated in the next two figures.

First of all, the flight data of figure 10 were divided into two segments,
from O to 30 seconds and from 30 to 56 seconds. The parameter-extraction pro-
gram was used to extract derivatives for the first 30 seconds of flight
(fig. 11). The computed and experimental time histories compare quite well.
The extracted derivatives are shown in the first column of table IV. These
same derivatives were used to predict the motions for the flight (of fig. 10)
from 30 to 57 seconds. This worked out fairly well except for the forward
velocity u, which diverged (fig. 12). The problem was traced to the trim
coefficient CXO, which was then computed to assure initial trim conditions.

Reasonably good calculated time histories were then obtained (fig. 13); how-
ever, the forward velocity and acceleration were not as good as expected. The
derivatives used to generate figure 13 are given in the second column of

table IV. At this point the computer was allowed to iterate to match the
flight data of figure 13. At convergence, the extracted derivatives were

those listed in the third column of table IV, and the calculated time histories
match the flight data quite well (fig. 14). Table IV shows that each section
of the flight yielded still another set. In this particular case the differ-
ences are not great, but other cases have been found where differences are
appreciable.

Another interesting situation arose in working with flight data for the
Helio Courier aircraft. Several experiments were made using rudder and aileron
inputs. In one series, the order of inputs was a rudder pulse followed by an
aileron pulse. In another series the order was reversed. In one experiment,
both controls were applied simultaneously. In working with these data, it was
found that the extraction program provided good fits to the flight data for
the rudder-aileron sequence (fig. 15), but not so good for the aileron-rudder
sequence (fig. 16). 1In addition, there were some differences in extracted
aerodynamics for various tests, even those with the same control sequence (see
table V). It should be noted that the ranges in some of the important deriva-
tives are quite large. The reasons for such variations have not been identi-
fied at this time.

The first column gives the results of combining two of the rudder-aileron
runs. As previously mentioned, this longer run using more data seemed to give
the most realistic set of numbers and the fit to the data was better than for
the aileron-rudder run.

CONCLUDING REMARKS

The feeling of this investigator is that given perfect data and a perfect
model, then unique results can be obtained. However, when using actual flight
data this situation does not exist. The situation could probably be improved
if better instrumentation were used, and if the analyst were fully familiar
with the capabilities, limitations, position, and alinement of the instruments.
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As pointed out, difficulty is still encountered in obtaining consistent
results even with very similar control inputs. Areas which require some
study are:

(1) Techniques for identifying and correcting incompatible data.

(2) Automating more of the preliminary data handling (before it enters
the parameter-extraction program).

(3) Evaluation of model completeness.
REFERENCE

1. Grove, Randall D., Bowles, Roland L., and Mayhew, Stanley C.: A Procedure
for Estimating Stability and Control Parameters From Flight Test Data by
Using Maximum Likelihood Methods Fmploying a Real-Time Digital System.
NASA TN D-6735, 1972.
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TABLE II.

EXTRACTED AERODYNAMIC PARAMETERS AND

STANDARD DEVIATIONS FOR THE F-8 AIRCRAFT

(Standard deviations are given in parentheses)

Mach
No. 0.81 0.90 0.98
CoeffsH
C 0.03% 0.02 0.02
o (0) (0) (0)
Cy .58 .58 .58
o (-) (-) (-)
c, . -k -4
o (0) (0) (0)
C, -6.02 -6.95 -7.49
a (.08) (.13) (.2h)
C, -.92 -1.01 -.97
@, (-) (-) (-)
Co . 003 .003 0
° (0) (.003) (0)
Ch -1.62 -2.04 -3.31
o (.01) (.10) (.02)
Co. -7.00 -7.00 -7.00
@ (-) (-) (-)
Cm -27.82 -29,17 -16.59
q (1.04) (1.83) (2.6)
C, -2.3k -2.58 -2.46
) (.02) (.73) (.o1)




TABLE ITI.

FOR VARIOUS RESPONSE MODES

EXTRACTED DERIVATIVES FOR THE HELIO COURIER AIRCRAFT

Longitudinal parameters

Lateral parameters

Elevator, Elevator Elevator, Aileron and
Parameter | aileron, and inputs Parameter | aileron, and rudder
rudder inputs only rudder inputs only
c -0.026 -0.025 c 0.003 ~0.016
x N
o o
C -.056 -.33 o -.81 -.92
X, yB
c, -.60 =45 cy .53 -.47
o p
c, -h.72 -5.48 cy -.70 -1.0
a r
c, -4.5 -4.5 cy .60 .09
q 5.
C, - by -. b7 c . 0013 -.0016
5 1
e o
Ch . 0019 -.00k5 c -.014 -.060
1
o B
Cy -.75 -.35 c, -.13 -.26
@ p
Ca. -4.6 -4.6 cz .13 o7
Q r
Cm -1.54 -2.65 C .019 .011
1
q 3}
r
Cms -1.3 -1k C, .096 .081
e B
c -.001k4 -.0015
)
c . 0805 . 086
g
C, . 007 -.006
b
cn -.078 -.105
T
Cn -.069 -.069
o}
r
Cn -.015 -.005
Ba,
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TABLE IV.

COMPARISON OF DERIVATIVES OBTAINED FROM SPLIT RUNS

DERTIVATIVES USED TO PREDICT FUTURE RESPONSES AND THE

Paremeter First Prediction of Converged Total
half second half second half run
Cx -0.01k4 0.026 ~-0.010 -0.010
(e}
cx .3 -3 .33 .32
[0 4 .
Cz - 22 -.226 -.19 -.225
o
C, -3.16 -3.16 -3.25 -3, 04
a
c -.48 -.48 -.56 -.50
%8
e
Cy 0 0 . 0016 0
o
Cm - 17 -.17 -.18 -. 167
a
C + C -10.17 -10.17 -12.00 -10.79
m m
q &
Cm -1.03 -1.03% -1.22 -1.07




TABLE V. COMPARISON OF A NUMBER OF LATERAL RUNS FOR THE HELIO COURIER ATRCRAFT
Control
input 8. - By B = B 5. = By
order 5 -5
a r
Parameters 1 2 1 2 3
C -0.0158 -0.0017 0 o] 0
y0
C -.918 -.T06 -1.17 .89 .88 .98
g
C -. 465 -.126 -.68 .55 -.51 -.70
Ip
C -1.0 -.306 -2.68 .85 -1.1 -1.49
yr
cy .088 .225 -.097 071 -.017 -.12
81‘
c -.0016 0 0 0 0
10
Cz -.62 -.056 -.0717 .0k9 -.0h1 -.055
B
Cz -.26 -.267 -.3h .25 -.21 -.31
P
cz .07 .10 L1k .15 .15 .13
r
Cz -.013 -.0023 . 005 .011 .012 0
8!‘
¢, . 0807 .085 .105 .076 .082 . 096
88.
C, -.0015 0 0 0 0
(o]
c .086 .093 . 093 .082 .083 . 087
B8 .
o] -. 0063 -.013 -.019 . 003 -.006 .04
"p
cn -.105 -.116 -.18 .1 -.12 -.103%
r
C, -.069 -.076 -.070 .09 -.08 -.072
81‘
Cc, -.00L6 -. 0071 . 0054 .O14 -.008 -.0085
5
a
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Figure 3.- Comparison of flight data with time histories for the F-8 aircraft
computed using the parameters of table II. Mach number = 0.808.
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Figure 7.- Comparisons of flight data with time histories for the Helio
Courier aircraft computed using the parameters of table III and
elevator, rudder, and aileron inputs.
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IDENTIFICATION OF AIRCRAFT STABILITY AND CONTROL
DERIVATIVES IN THE PRESENCE OF TURBULENCE

Kenneth W. Iliff
NASA Flight Research Center

SUMMARY

A maximum likelihood estimator for a linear system with state and observation
noise is developed to determine stability and control derivatives from flight data
obtained in the presence of turbulence. The formulation for the longitudinal short-
period mode is presented briefly, including a special case that greatly simplifies
the problem if the measurement noise on one signal is negligible. The effectiveness
and accuracy of the technique are assessed by applying it first to simulated flight
data, in which the true parameter values and state noise are known, then to actual
flight data obtained in turbulence. The results are compared with data obtained in
smooth air and with wind-tunnel data.

The complete maximum likelihood estimator, which accounts for both state and
observation noise, is shown to give the most accurate estimate of the stability and
control derivatives from flight data obtained in turbulence. It is superior to the
technique that ignores state noise and to the simplified method that neglects the
measurement noise on the angle-of-attack signal.

INTRODUCTION

Although there are several well-established techniques for determining aircraft
stability and control derivatives from flight data when the tests are performed in
smooth air (ref. 1, for example), they are generally unable to treat data containing
unknown external disturbances, such as turbulence. Turbulence may be of great
concern in tests of future STOL aircraft because much of the flight-test time will be
at low altitudes where turbulence is more prevalent.

Determining stability and control derivatives from flight-test data containing
significant turbulence disturbances falls under thé broad category of identifying a
system with state and observation noise. This paper presents the results of apply-
ing the maximum likelihood technique to that class of problem specifically for longi-
tudinal short-period aircraft dynamics. A simplified method that assumes there is
no noise on the angle-of-attack measurement is considered in addition to the complete
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maximum likelihood estimator. These methods are applied first to simulated data
in which the true values of system parameters and disturbance function are known,
then to actual flight data recorded in strong turbulence. Comparisons are made of
the fit of the measured and computed time histories. The coefficients estimated by
using various methods on data obtained in turbulence are also compared with those
obtained from smooth-air data.

In order to demonstrate the importance of accounting for state noise in the esti-
mation technique, the results are compared with those obtained by a third method
that ignores the state noise in its formulation.
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SYMBOLS

stability matrix

normal acceleration, g

control matrix
observation matrix
observation control matrix
error quantity

state noise matrix

constant equating Zg to Mg , sec
e

observation noise matrix

turbulence power spectral density

acceleration due to gravity, m/sec2 (ft/sec2)
cost functional

scaler multiple of free-stream angle of attack to measured angle
of attack

Volterra operator given by Kalman filter

distance from center of gravity to accelerometer, m (ft)
distance from center of gravity to angle-of-attack vane, m (ft)

pitching moment divided by moment of inertia, rad/sec2



output vector due to control input only
number of data points

gaussian white noise

state estimator error covariance matrix

matrix used in JIII

total time interval, sec

trace of a matrix

time, sec

control vector

mean velocity, m/sec (ft/sec)
observation vector

cost functional weighting matrix

vertical turbulence component, m/sec (ft/sec)

state vector

normal force divided by mass and velocity, rad/sec
angle of attack, rad or deg

increment

gradient of (+) with respect to «
elevator deflection, rad or deg

pitch angle, rad or deg
vector of unknown parameters

standard deviation

turbulence power, mz/sec2 (ftz/secz)

actual power in the turbulence time history, mz/sec2 (ftz/secz)
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Subscripts:
b

C

I,II,1II

indirect estimate of oz_ s m2/sec2 (ftz/secz)
1

direct estimate of oé, mz/sec2 (ftz/secz)

frequency, rad/sec

break frequency for turbulence spectrum, rad/sec

norm of quantity enclosed

denotes estimated quantity
denotes time derivative of variable

transpose of a matrix

bias

control

gust

measured

constant with time
state

partial derivatives with respect to subscripted variables

Estimators I, II, and III, respectively

DYNAMIC SYSTEM MODEL

The system to be identified is the longitudinal short-period dynamics of an air-
craft subjected to external turbulence disturbances and specific test inputs by the
pilot. The simplified longitudinal equations of motion for this system are given as

O(S = Za(xs + 0 + Zaeae + ZO + Zaag (1)
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0 = Mozas + M6-0+ Maeae + M0 + Maag (2)

where

= Vv 3
oy wg/ 3)

and the random turbulence velocity Wg is considered to have zero mean value and

a power spectral density given by

202w
G (w)=—38°C_ (4)
w 2 2
g (W™ +w?
c
w =Y _ (5)

The complete system state and observation equation (including the turbulence
model) can be written as

X = Ax + Bu + an (6)

v=Cx+Du+Gn+v &)

b

where

<
1
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0
0
F = 0
’s
v ch
- _
B g1, 0 0 0
0 €90 0 0
G =
0 0 €33 0
0 0 0 €44
| _

and ng and n are, respectively, scalar- and vector-valued uncorrelated

gaussian white noise processes with zero means and unity spectral densities. The
unity element in u and the coefficients Zo and M0 are to account for possible
initial biases in the state equation. The vector vy is the instrument bias. This
formulation follows that of a challenge to design an automatic control system with
unknown parameters based on external measurements which was presented by
Lawrence Taylor, Jr., and Herman Rediess at the 1970 Joint Automatic Control Con-
ference (JACC).

The unknown coefficients to be estimated are contained in the matrices A , B,
C, D, and F and the vectors Vb and x(o). For simplicity, the vector «

is defined to be the collection of the unknown coefficients to be estimated. Because
different unknowns may be estimated at different times, k does not always contain
the same set of coefficients.

MAXIMUM LIKELIHOOD ESTIMATORS

The three methods considered in this paper are all based on a maximum likeli-
hood criterion. They differ by virtue of the assumptions made about the state or
observation noise. For convenience of presentation they are referred to as Estima-
tors I, II, and III.
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Estimator 1 - State Noise Neglected

If there is no state noise (i.e., ng = 0), the method of reference 1, which is

referred to as a Newton-Raphson or quasi-linearization technique, applies directly.
It should be pointed out that no estimate of O‘g is made by this Estimator; there-

fore, the estimate of & is identically zero. The maximum likelihood estimate is

obtained by minimizing

T 2
J. = v-Cx-Du-v dt (8)
I b
0 WI
where
- _
5 0 0 0
€11
1
0 ?— 0 0
_ 22
WI =
1
0 0 — 0
€33
1
0 0 _
0 2
L €44 |

The details of this method and an algorithm to compute the parameter values

that minimize the functional JI are presented in reference 1.

Estimator II - Angle-of-Attack Measurement Noise Neglected

If there is a significant state noise, but the measurement noise on o, can be

neglected (i.e., ~ (), the state noise problem can be simplified to essentially

€44
that of Estimator I. This approach was first used by Balakrishnan at the 1971 Joint
Automatic Control Conference in his treatment of Taylor and Rediess' design chal-
lenge. If €44 = 0, the equation for o (fourth row of eq. (7)) can be solved

for o :
g
la » 1
% gt V_e * 'K—O:am ®

84



Substituting equation (9) into equations (1) and (2),

ZO(IO( 1 Z(X
o = 1- v 0+25 6e+zo+—K——am (10)
e o
kY Mozla 1 Moz
0= Mé Bl 0+M6e6e+Mo+ﬁ;°‘m an

the states s 6, and 6 are determined by equations (10) and (11) in which the
measurement o is treated as a forcing function in the same manner as 8e. The
state ag is determined directly from equation (9). This reduces the problem to

that of Estimator I. The cost functional is

T 2
Jn=f||v—Cx—Du—vb|| dt (12)
0 w
11
where
—; 0 0 0
€11
1
W, = 29
1
0 0 —5 0
€33
0 0 0 0

Estimator III - State and Measurement Noise Included
The maximum likelihood method for the state noise problem in which the meas-
urement noise on o cannot be neglected is more complicated. The derivation of
this algorithm, which is beyond the scope of this paper, is presented in refer-
ences 2 to 4. It is based on minimizing the functional

2

T 2
JIII= %‘_f lv—m—.f(v—m)ll _1—”vH _,]dt + Tr(R) a13)
0 (GG*) (GG*)
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where
x = Ax + Bu
c c
m=Cxc+Du+v

/

b

1/2

R = C*(GG*)_I 2P(GG*)_ C

and £ is a Volterra operator that is given by the Kalman filter, P is the state
estimator error covariance matrix, and m is the response of the system due to the
control input alone.

The basic concept of the algorithm is depicted in figure 1. The top sequence
indicates the creation, either by computer simulation or flight test, of the data to
be analyzed. The next sequence is the computation of the vehicle response and the
gradient of the response due to the control input only. These values are put
through a Kalman filter where the estimates of the states and gradients are computed,
with all unknown coefficients held fixed. These quantities are then used with the
computed responses of the control alone to perform the minimization of the likelihood
functional. At each iteration a new vector «k is computed, and the process is
repeated until the gradient of the likelihood is essentially zero. Thus a final set of
estimated coefficients and estimates of the observations and states are obtained.

SIMULATION TEST RESULTS

The application of Estimator I to simulated data with turbulence is discussed in
reference 2, and Estimators I, II, and III can be evaluated by applying them to sim-
ulated data. Estimators II and III are tested herein. The case chosen for the simu-
lation is one from Taylor and Rediess' 1970 JACC presentation (also partially pre-
sented in ref. 2) inasmuch as probability distributions of the various coefficients to
be estimated were included. The pertinent information for this case is presented in
tables 1 and 2. For all the simulation results the startup values chosen were the 30
(standard deviation) values of the corresponding coefficients. Thus the uncertainty
usually associated with what initial estimates should be used is eliminated. This
procedure should provide some information about the neighborhood needed to assure
convergence.

The control input is a square-wave elevator command of 0.02 radian amplitude
at 0.4 hertz. The conditions for the simulation are listed in table 1.
Estimator II

Figure 2 shows the fit of the simulated data with zero measurement noise on «
with the estimated data obtained by Estimator II. The fit is virtually perfect. Even
the estimated state variables o and o‘g show an exact fit. This is important to

note in the simulated results, inasmuch as this comparison cannot be made with
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flight data because the true values are not known. The unknown coefficients to be

estimated are Za, Ma’ Mé , Z6 , and M6 . The instrument biases, state initial
e e

conditions, and aerodynamic bias terms ZO and MO need not be estimated for

simulated data.

Table 2 shows the estimates of each coefficient at each iteration for 4.9 seconds
of data as well as the correct results. Figure 3 is a plot of the same results. All
coefficients have converged in four iterations, and only Mg and Zg fail to

attain the correct value to four places.

Another item of interest for verification of the algorithm is how long an observa-
tion time is needed or, more importantly, how many data samples are needed. Inas-
much as At =0.01 second, the number of data points is N =T/At + 1. Table 3
presents the values obtained as a function of the observation time, T. Figure 4
shows the same data. Fairly good estimates are obtained after only 0.3 second of
data. After 2.5 seconds all the estimates are nearly at the true values except Z 5 -

e

As in figure 3, all the estimates have converged to essentially the correct values by
4.9 seconds of observation time.

Estimator III
The procedure used to test Estimator III on simulated data is identical to that
used with Estimator II, with two exceptions. Now « has measurement noise with
a value of €44 = 0.00005 radian, and the turbulence power aé is an additional

unknown. Figure 5 is the fit obtained with Estimator III on 4.9 seconds of data. As
before, the fit is essentially perfect. The estimate of the turbulence time history «

is not as good as with the estimates of Estimator II, although it still appears exact.
Table 4 and figure 6 present the coefficients as a function of the iteration, again

starting at the 30 values. After six iterations, the solution converges to nearly the

correct values. All are within less than 1 percent except 2 5 and the estimate of

e
the turbulence power o : The estimates of stability and control derivatives are

not as good as with Estimator II, but this case is one of truly stochastic identification.
Table 5 and figure 7 present the estimates obtained by using Estimator III as a

function of the observation time, T. The direct estimates in figure 7 refer to the

estimates obtained directly as a consequence of minimizing the cost functional. The

indirect estimate (applies only to the estimate of the turbulence power) is obtained
by computing the turbulence power from the estimated turbulence °‘g' After 0.5 sec-

ond, fairly good estimates are obtained for z, and M, A full 12 seconds of data
are needed before essentially exact values are obtained. Once again Z 5 1isthe
e

last to converge. Inasmuch as the stochastic identification problem is much more
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complex than the deterministic input case, these results are encouraging.

The simulation of the turbulence needs some further explanation. Figure 7
shows the correct Ug‘_2 varying as a function of observation time. The reason for

this is that the power of the turbulence is a function of a random variable. It actually
took about 25 seconds of data before the simulated turbulence reached the desired
value. Therefore the correct value is taken as the power of the simulated turbu-
lence for a given observation time. The estimation of turbulence factor may vary
frequently by a factor of two (3 dB) from the actual power in a given time history.
This would seem discouraging in that most coefficients can be estimated exactly.

In this example the power estimates are much closer than a factor of two, but it
would not be surprising if they deviated considerably more.

Because stochastic identification is complex, it would be advantageous to make
the aircraft model as simple as possible. As was noted in the previous analysis,
Zs was found to be the least reliable to estimate for both Estimator II and Estima-

e

tor 1II. Fortunately, Z § can be constrained to be directly proportional to M 5
e e
without significant compromise because the force imposed by the deflection of the
control surface can be assumed to act at the elevator surface, i.e., the flow inter-
ference or interaction takes place only at the tail and the other effects can be ignored.
Then 2 5 = FcM6 can be substituted in the differential equations, where Fc is
e e

a known function of the flight condition and the geometry of the aircraft. There is a
danger in this constraint in that it may degrade the estimation of M s > however,
e
this did not occur. The preceding analysis was repeated on the simulation with Z 5
e

constrained to M 5 and the results were essentially the same except that Z 5

e e
was attained as easily as the other derivatives. All subsequent analysis with
Estimators II and III was done with Z 5§ = FCM 5 and wherever Z s Aappeared it

e e e
was replaced with FcM5 .
e

At this point it would seem that Estimator II is preferable to Estimator III, if
there really is negligible noise on «. Although the simulation has shown that both
methods can be applied successfully under ideal circumstances, it is by no means a
complete assessment of the general validity of the methods. Both methods were also
applied to actual flight data obtained in turbulence. Those results, which are pre-
sented in the next section, clarify the question of whether the simulated results are
generally valid.

FLIGHT-TEST RESULTS

The flight data used were obtained from tests on a Lockheed JetStar airplane,
which is described in reference 5. The airplane was specifically flown in turbulence
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while the maneuvers were performed to test these methods. The conditions of the
test are listed in table 6. These data are analyzed more completely in reference 4.
Figure 8 presents 65 seconds of continuous data containing five separate elevator
pulse maneuvers, which are designated A, B, C, D, and E. These data were ana-

lyzed by Estimators I, II, and III. The coefficients to be estimated were Za’ Ma’

Mg, Zae, Mae, Zo’ Mo’ ozs(o), 0 (o), ag(o), Vbl, and Vb3' It was not
always possible to obtain estimates for all the unkonwn coefficients; this is noted
where applicable.

Estimator I

Figure 9 compares the flight data for maneuver E with those obtained by Esti-
mator I, which neglects state noise. Considering the amount of turbulence, it is
surprising that any stable solution can be obtained. On closer examination, it is
evident that Estimator I finds that the only significant information in the maneuver is
during the control input. Therefore, the fit is best during that portion, and the
rest of the data are essentially ignored. The poor fit in this example shows that
state noise must be accounted for in the analysis method.

Estimator II

Figure 10 shows the fit for maneuver C, which was the poorest comparison of
flight to estimated data by Estimator II. Not only was the fit poor, but convergence
was difficult to achieve. Also, with the initial conditions taken to be unknown on

o and « g’ no stable solution could be obtained. The same situation existed on

maneuver B. The other maneuvers, although sometimes slow to converge, all
attained stable solutions with the full set of unknowns. The best fit obtained with
Estimator II is shown in figure 11, in which the comparison for maneuver E is shown
for flight data and the data estimated by Estimator II. This maneuver was performed
during the portion of the flight with the greatest turbulence. This fit is an improve-
ment over that obtained by Estimator I in figure 9.

Estimator III

Estimator III was then used to obtain estimates of the coefficients for the same
five maneuvers. The same Kk vector was used, with the addition of the turbulence
power. Convergence was obtained routinely, and all five maneuvers converged in
three iterations. All combinations of consecutive maneuvers also converged in three
iterations. All the fits obtained by Estimator III were considered better than the
best fit obtained by Estimator II. Figure 12 shows the fit of the flight data of maneu-
ver C compared with the estimated data obtained by Estimator III. This is a signifi-
cant improvement over that obtained by Estimator II, and the complete unknown vec-
tor was also obtained. Figure 13 compares the flight data of maneuver E with the esti-
mated data obtained by Estimator III. This was the poorest fit obtained by Esti-
mator III. It is still significantly better than that obtained by Estimator II, which was
considered the best fit obtained by that method.
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It should be pointed out that Estimator II and Estimator I would converge only
for the basic maneuvers, and then sometimes with difficulty. As previously pointed
out, Estimator III converged for the basic maneuvers as well as all combinations of
consecutive maneuvers. Figure 14 compares the flight data of maneuver ABCD
(shown in fig. 8) with the estimated data obtained by Estimator III. The fit is con-
sidered as good as is usually obtained using smooth-air data with some discrepan-
ciesin 6 and 4.

Comparison of Estimated Coefficients

Another significant question regarding any identification technique is "How
good are the estimates of the coefficients obtained by the technique?" For the sim-
ulated data the correct answers are known, so it is easy to decide how "good" the
coefficients are. When the true values of the coefficients are not known, two ways
to assess each method (in addition to the fit obtained) are (1) by their agreement
with other methods of estimating coefficients and (2) by the repeatability of the
estimates for different maneuvers for which the coefficients would be expected to be
identical.

Figure 15 shows the estimates obtained for each method as a function of the
maneuver analyzed. The raw data are given in table 7. The values obtained by
Estimator III are also shown in the figure for some of the combinations of maneuvers.
Only the major coefficients of interest that are common to all three estimators are
shown. Although the plots are somewhat confusing because of the scatter in the
results of the various methods, the Estimator III estimates have less scatter and the
estimates obtained from the longer maneuvers show even less variation.

A more compact way of displaying the data would be to show the first- and
second-order statistics of the estimates obtained for each of the basic maneuvers.
Estimates obtained by other methods could then also be shown. It is of interest to
compare data obtained from two other sources with the results of the preceding
methods: the coefficients estimated by Estimator I from data obtained in smooth air;
and the estimates obtained from wind-tunnel data. Data were analyzed from seven
maneuvers performed in smooth air at essentially the same flight condition as the
maneuvers performed in turbulence. The first- and second-order statistics of these
maneuvers were then determined.

The mean and standard deviation for each of the methods except for the wind-
tunnel estimates are presented in table 8 and figure 16. Unfortunately, the wind-
tunnel estimates provide only a single data point, but that point can still be compared
with the other data. The symbol in figure 16 indicates the mean for each method, and
the vertical line represents *1 standard deviation for the five maneuvers analyzed.
Estimator I shows the greatest standard deviation for all the coefficients except
MB" The greatest standard deviation for Mg was obtained by Estimator II. Of the

three methods of estimating coefficients from data obtained in turbulence, the stand-
ard deviation of the estimates of Estimator III were considerably smaller than those of
the other two methods, with the exception of M o The standard deviation of M,

for Estimator II is about equal to that of Estimator III.
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Of most significance in figure 16 is, perhaps, that the standard deviation of
three of the five coefficients is better for Estimator III than for the estimates obtained
from smooth-air data. The means of the smooth-air estimates and the estimates of
Estimator III are in good agreement except for Z,- The wind-tunnel estimates and

those obtained by Estimator III are also in fairly good agreement. It should be
pointed out how well the means obtained by Estimator III for the basic maneuvers
agree with those obtained from the longer maneuvers. (Compare with table 7 or
fig. 15.)

In summary, the estimates obtained by Estimator III were (1) in better agreement
with those obtained from smooth-air data and (2) showed greater repeatability of the
estimates for different maneuvers at the same flight condition. Therefore, on the
basis of the analysis of flight data obtained in turbulence, Estimator III provided a
superior fit, better agreement with estimates from other methods, and greater
repeatability of estimates at the same flight condition.

Estimator III is more complex and therefore requires more computer time for each
iteration. This would seem to be a drawback; however, Estimator III converged in
three iterations for all the flight data analyzed, whereas Estimator Il always required
six iterations and usually more. For the existing computer programs, Estimator III
always converged in less computer time than did Estimator II.

This study showed Estimator III to be preferable in every respect, including
computation time, to the other methods used in analyzing flight data obtained in tur-
bulence. Estimator II was found to be preferable to Estimator I.

This analysis of flight data points out that evaluating a method on the basis of
simulated data alone may result in an erroneous conclusion. For example, the study
using simulated data showed that Estimator II was preferable to Estimator III, but the
study using flight data showed Estimator III to be much better than Estimator II.

CONCLUSIONS

Three maximum likelihood estimators for identifying aircraft stability and con-
trol derivatives were applied to simulated and flight-test data containing turbulence
disturbances. Estimator I did not account for the turbulence (no state noise); Esti-
mator II accounted for the turbulence but assumed the noise on the angle-of-attack
measurement to be zero; and Estimator III accounted for both turbulence and measure-
ment noise. The study showed that:

1. It was necessary to use an estimator that accounted for turbulence if the data
contained significant turbulence disturbances.

2. Estimator III was superior to Estimator II with respect to the time history fit,
convergence rate, and better consistency in the estimates.

3. The estimated coefficients for data obtained in turbulence using Estimator III
were nearly as accurate as those for data obtained in smooth air using Estimator 1.
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4. The variance of the estimates obtained with Estimator III decreased as the

length of observation increased. Estimator III was the only method that converged
when two or more maneuvers were combined.

5. Estimator III required no more computer time than Estimator II because Esti-

mator III converged more rapidly.

6. The final decision regarding the desirability of an algorithm should be based

on flight data rather than on simulated data.
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TABLE 1. SUPPLEMENTARY DATA FOR SIMULATION TESTS

V =509 m/sec (1670 ft/sec)
og = 1.524 m/sec (5 ft/sec)
At =0.01 sec
lZ = 3.048 m (10 ft)
1,=9.76 m (32 ft)

g11° 0.0005 rad/sec

g,y = 0.0001 rad

g33=0.01g
€44~ 0.00005 rad

93



TABLE 2. CONVERGENCE OF STABILITY AND CONTROL DERIVATIVES FOR
4.9 SECONDS OF DATA USING ESTIMATOR II

Zaf’ Ma’ \ Me Zée, Mée,
Iteration rad/sec rad/sec rad/sec rad/sec rad /se02

0 -2.400 =39.00 =2.400 -0.6750 -36.00

1 -1.589 -53.48 -.857 -.4483 ~50.14

2 -1.653 -52.75 -1. 389 -.4489 -50.90

3 ~1.650 -53.85 -1.638 -.4489 -52.35

4 -1.650 -54.00 -1.644 -.4498 -52.50

5 -1.650 -54.00 -1.644 -.4496 -52.50
Correct value ~1.650 -54.00 -1.650 -0.4500 -52.50

TABLE 3. EFFECT OF THE OBSERVATION TIME INTERVAL ON THE ESTIMATED

STABILITY AND CONTROL DERIVATIVES USING ESTIMATOR 11

Z(lf. Md ) Mé Zbes Mée:

T, sec rad/sec rad/sec rad/sec rad/sec rad/sec2
0.3 -1.504 -52.71 -3.627 -0.3933 -58.94
.5 -1.603 -51.61 -2.065 -.4293 -51.96
1.0 -1.649 -54.00 -1.760 -.4614 -52.27
2.5 -1.663 ~-53.94 -1.649 -.4652 -52.47
4.9 -1.650 -54.00 -1.644 -.4496 -52.50
11.9 -1.650 -54.00 -1.650 -.4500 -52.50
Correct value -1.650 -54.00 -1.650 -0.4500 -52.50
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TABLE. 6. SUPPLEMENTARY DATA FOR FLIGHT TESTS

V =179.3 m/sec (588 ft/sec)
Weight = 133,300 N (30,000 1b)
At = 0.02 sec
lZ =0m (0ft)

1,=7.94m (26 ft)

€11 0.00166 rad/sec
€99 = 0.0007 rad
€45 = 0.0126g
€44 = 0.00132 rad
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IDENTIFICATION OF M2/F3 STABILITY AND CONTROL

DERIVATIVES FROM FLIGHT DATA CONTAINING GUST EFFECTS*

By David E. Stepner and Raman K. Mehra

Systems Control, Inc.
260 Sheridan Ave.
Palo Alto, Ca 94306

SUMMARY

This paper discusses the application of the maximum likelihood identifica-
tion technique to M2/F3 lifting body flight data containing wind gust effects.
With the objective of this effort being the identification of the stability and
control derivatives, it is shown first that the output error technique (or mod-
ified Newton-Raphson) fails to fit the recorded data accurately. The means of
applying the maximum likelihood technique to this problem are then discussed
and the results given which indicate an accurate fit to the data. The question
of derivative signs opposite to the wind tunnel values is then addressed and
the results of three techniques for dealing with this problem are presented.
These techniques are a priori weighting, fixing parameter values and rank defi-
cient inverses.

INTRODUCTION

The importance of extracting aircraft stability and control derivatives
from flight test data has been recognized for a long time. Numerous methods
for performing this parameter identification have been developed (see Taylor,
et. al, Ref. 1) and usually they fall into one of two categories: (1) least
squares or equation error methods, and (2) output error methods. However, all
methods falling into either of these categories suffer from important deficien-
cies. Equation error methods lead to biased estimates in the presence of meas-
urement noise and output error methods fail when process noise (wind gust dis-
tribution) is present. The development of the more general Maximum Likelihood
(ML) Method [Ref. 2,3] for parameter identification has been motivated by sever-
al considerations. The ML method can handle both measurement and process noise.
In cases where no process noise is present, it reduces to an output error method
and where no measurement noise is present, to an equation error method. The ML
method can also yield realistic values of the variances of the parameter esti-
mates and it can be used to estimate the noise covariances.

M2/F3 FLIGHT TEST DATA
The data supplied on flight 21, case 6 of the M2/F3 lifting body contained

very evident effects of wind gusts on the time histories of the sideslip angle
and lateral acceleration. Nothing was known about the statistics (correlation

*
This work was supported by NASA under Contract No. NAS1-10700

115



time, covariance) of these gusts, nor was the data processing instruments re-

sponsible for the quantization and clipping effects known.

A total of 401 data

points were supplied, representing 8.02 seconds of flight at an angle-of~attack
Previous attempts to fit this data had provided

of 1.57° and speed of .468 M.

inaccurate results.

The model used to fit the observed data was the linearized lateral equa-

tions of motion with the gust effect, B,, entering as sideslip angle.

equations were

_-I'>1 i L )
b Lr L 0
r Np Nr N 0
C . =
B sin o cos o YB 530—86
$ 1 tan® 0 0
| — _

F

where (all quantities in body axes)

p is roll rate (°/sec)

r is yaw rate (°/sec)

B is sideslip angle (°)

¢ is roll angle (°)

Ga is aileron deflection (°)
Ga is rudder deflection (°)

C is a transformation matrix

Xz
1 -3
X
IXZ
c= | "7~ 1
Z
0 0
0

v

These

L L L $
Ga Gr [¢] a LB
N N N é
6a dr ° r NB
¥ +
Y Y 1 Y
0 0 0 0
a— - — n—— W p—
G u T

The inertias, angle of attack, flight path angle and velocity were all assumed
to be known and constant over the data record.

to be identified.

The measurement equations were given as
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where n, i=1,...,5 are independent white Gaussian measurement errors.
OUTPUT ERROR - NO WIND GUSTS INCLUDED

A first processing of the M2/F3 flight data was performed with the ML algo-
rithm in the output error mode, i.e., no wind gust effects included (B,=0).
Even in this mode, the ML method is different from the more familiar Newton-
Raphson technique in that the weighting matrix for the measurements is adaptive.
The time histories of the measurements are given in Figure 1. As these tracés
indicate, the worst fits are to sideslip angle and lateral acceleration, al-
though none of the fits to the observed data are very good. The parameter esti-
mates obtained for the output error processing and their standard deviations are
given in Table 1.

PERFECT SIDESLIP ANGLE MEASUREMENT

For this processing of the data, it was assumed that the measurement noise
on the sideslip angle measurement is much smaller than the gust. There is then
perfect correlation between the gust and the sideslip angle measurement distur-
bance, both being B,. The Kalman filter for the complete 4 state model can be
explicitly derived as

c§=m+cu+r(y3-e)

where ' is the Kalman gain. y, is treated as a deterministic control and the
model order can be reduced to g by canceling the B state for the above equation,
The time histories of the fit are shown in Figure 2 and the parameter estimates
in Table 1. There is excellent agreement to the observed data and the residuals
of the lateral acceleration approached white noise, which is indicative of a
perfect fit,

As the estimates in Table 1 indicate, some of the derivatives have changed
sign from the wind tunnel values. These were attributed to the small excitation
provided by the maximum of -.2° rudder deflection, the closed loop identifiabil-
ity problems caused by the yaw damper and the possibly inadequate model struc-
ture.

Once a complete set of parameter estimates was obtained, it was possible
to recover the time history of the gust, Bn’ and its statistical properties.
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The Bn time history, which is shown in Figure 3, was easily fit with a first
order model. In addition, the sample covariance indicated that its intensity
was at least two orders of magnitude stronger than the sideslip angle measure-
ment noise.

A PRIORI WEIGHTING

With the ML technique providing excellent fits, efforts were then focused
by eliminating the numerical problems causing the incorrect derivative signs.
The first attempt used the a priori weighting technique in which a weighted
quadratic term in the difference between the estimated and a priori values is
added to the likelihood function to improve the conditioning of the information
matrix. Unfortunately, such a method requires extensive tuning of the weights
in order to obtain good fits to the observed data. This tuning was not done
but rather weights supplied for an HL-10 lifting body were used. The resulting
fits to the observed data were poor, especially for lateral acceleration, al-
though, as shown in Table 1, many of the derivative estimates were in excellent
agreement with the wind tunnel values.

FIXED PARAMETER VALUES

The basic causes of the incorrect signs for some of the parameters were
that either the sensitivity of the output to changes in those parameters were
small or that there was high correlation among the sensitivities of several of
the parameters. Both these problems can be identified by noting the size of
the diagonal elements of the information matrix and by noting its normalized
off~diagonal coefficients, A technique often used to treat these problems has
been to fix one or more of the parameters at a priori (e.g., wind tunnel) values
and proceeding with the identification of the remainder.

Several different combinations of fixed parameters were investigated for
obtaining an accurate fit to the observed data and maintaining the wind tunnel
value signs. The best results were obtained with the Lp, Ly, Lg, Nb, N, and
8y derivatives at fixed values. Although the fits were improved over those from
the a priori weighting technique (especially for lateral acceleration), they
were still far below those obtained by the ML method alone. The parameter esti-
mates, as given in Table 1, are all seen to have the same sign as the wind
tunnel values.

It was finally determined that the parameter fixing technique did not im-
prove the identification because: (1) the correlation may not simply be between
pairs of parameters, but may involve an entire set of unknown parameters, and
(2) it is not usually possible to choose correctly a set of parameters to fix
or the values at which to fix them.

RANK DEFICIENT INVERSE

The solution to the parameter dependency problem is to find the directions
in parameter space corresponding to combinations of parameters which camnot be
identified. A perfect dependency among the parameters would, strictly speaking,
result in a zero eigenvalue of the information matrix, causing it to be singular.
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However, since round-off and other numerical errors prevent the information
matrix from being exactly singular, all the eigenvalues will be non-zero with

a spread between the smallest and largest eigenvalue being many orders of magni-
tude. In such a case, it 1is better to use a rank deficient solution for the
inverse rather than a full rank solution. That is, the inverse to the informa-~
tion matrix should be computed leaving out one or more of the smallest eigen-
values.

The fits to the observed data are shown in Figure 4. Comparing these with
Figure 2, it can be seen that the fits are only slightly degraded. The para-
meter values obtained for this third order rank deficient solution (3 eigen-
values neglected) are given in Table 1, Only one of the parameters still has
an opposite sign from the wind tunnel values. Many of the parameters, such as
N5r, now have the correct sign from physical considerations, where before they

did not. It is clear that further development work on this rank-deficient solu-
tion approach will improve the estimates even more.

CONCLUDING REMARKS

The generalized Maximum Likelihood (ML) Identification Method, which in-
cludes the output error and equation error methods as special cases, has been
applied to flight test data with gust effects from an M2/F3 lifting body. With
the ML method accurate fits to the observed measurements were obtained whereas
the output error method failed to adequately match the data. Several of the
derivatives of the identified linearized lateral equations of motion were of
opposite sign from the wind tunnel values. Three techniques were investigated
for correcting this problem: a prioril weighting, parameter fixing, and rank
deficient inverses. Of those, only the rank deficient technique maintained good
fit to the data while correcting most of the sign reversals. This technique
used with the maximum likelihood method seems to offer the best technique for
automatically eliminating non-identifiable prameter combinations and identifying
those that remain, even in the presence of gusts.
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ESTIMATION OF LONGITUDINAL AERODYNAMIC COEFFICIENTS
AND COMPARISON WITH WIND-TUNNEL VALUES
By Rodney C. Wingrove

NASA Ames Research Center

SUMMARY

This paper reviews some recent experience at Ames Research Center in the estimation of aero-
dynamic coefficients for the Lear-Jet and the Augmentor Wing Jet STOL Research Aircraft. The coef-
ficients estimated from flight data are compared with values based on large-scale wind-tunnel tests. The
results obtained by the regression and quasilinearization identification techniques are also compared.
The regression method generally provides the lower standard deviation in the coefficient estimates and
provides the better fit to the wind-tunnel values. The addition of nonlinear terms in the aerodynamic
equations decreases the difference between the estimated and measured time histories but also increases
the standard deviation in the estimated coefficient values.

INTRODUCTION

This paper considers the problems in estimating aerodynamic stability and control characteris-
tics from recorded flight-test data. Although many identification methods have recently been developed
(refs. 1-8), several problems remain. The problems include determining the form of aerodynamic equa-
tions required to mathematically model each type of aircraft and obtaining unbiased estimates, with
small standard deviations, for the parameters in these models (refs. 3 and 7-11). This paper will review
some recent flight experience at Ames in these problem areas.

Several recent studies (refs. 1-4) have compared different identification algorithms for
estimating aircraft parameters and have found that the results may depend on the technique used. These
identification techniques fall generally into two categories: equation error and output error. This paper
will present results for both a regression technique (equation error) and a quasilinearization technique
(output error).

With noise in the measured aircraft states, the regression technique can produce biased
estimates of the coefficient values (refs. 1-4). The quasilinearization technique can reduce the bias
error; however, it may produce the larger standard deviations in the estimated coefficient values (ref. 1).
The effects of errors in modeling the aerodynamics (e.g., uncertainties in the proper type and number
of terms) have not been studied in detail and it is not yet clear how these errors may affect the results
obtained from each method.

This paper first describes the subject aircraft and presents the equations used to represent their
aerodynamic characteristics. The identification techniques used to extract the coefficient values from
the flight data are next outlined and the results obtained by each method are compared. Comparisons
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are then made between these coefficients derived from flight data and those obtained from wind-
tunnel data. The final section reviews one of the more important problem areas, that of determining
the number and type of nonlinear terms to be used in modeling the aerodynamics.

SYMBOLS

am pitching acceleration, rad/sec?
ay acceleration measured along X axis, g units
ag acceleration measured along Z axis, g units
B constant bias term
c mean aerodynamic chord, m (ft)
C aerodynamic coefficient
g acceleration of gravity, m/sec? (ft/sec?)
Iyy inertia about the Y axis
J cost function
M aircraft mass

number of time series data points
q pitching rate, rad/sec (or noted otherwise)
Q dynamic pressure
S aircraft wing area, m? (ft?)
T thrust component
u velocity along X axis, m/sec (ft/.sec)
A" total velocity, m/sec (ft/sec)

Ve calibrated airspeed, m/sec (knots/hr)
w velocity along Z axis, m/sec (ft/sec)

w weighting matrix
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Y vector of aircraft states and accelerations

o angle of attack, rad (or noted otherwise)

) elevator deflection, rad (or noted otherwise)
0 pitch angle, rad (or noted otherwise)

p atmospheric density

o standard deviatioﬁ (rms)

estimated value

AERODYNAMIC CONFIGURATIONS AND EQUATIONS

Results are presented from flight-test data obtained for the Lear-Jet and Augmenter Wing Jet
STOL Research Aircraft (AWJSRA) (fig. 1). The Lear-Jet is a conventional light twin-jet transport; the
AWIJSRA, however, is unconventional in that it is a powered-lift configuration.

Aerodynamic coefficients for these two aircraft have been determined previously from wind-
tunnel tests conducted in the Ames 40- by 80-Foot Wind Tunnel. For the Lear-Jet, a full-size airframe
(unpowered) was tested in the tunnel (refs. 12 and 13); for the AWJSRA, a half-scale model (powered)
was tested in the tunnel (refs. 14 and 15). Adjustments in the AWJSRA data to account for differences
between the tunnel and flight configurations are discussed in reference 16, and the coefficient values
are summarized in references 17 and 18.

Standard flight-test instrumentation was used for the flight investigation. The instrumentation
included nose booms with pitot-static systems and vanes, body-mounted accelerometers and rate gyros,
vertical gyros, and position transducers on the control surfaces. (The AWJ SRA also included instru-
mentation to measure propulsive characteristics.)

The mathematical model that represents the forces acting on the airframes is described in a
body-axis coordinate system. The linear accelerations (ax, az) and the pitching acceleration (am) acting
on the Lear-Jet and on the AWJSRA are taken as follows:

Lear-Jet:
ix = (@S/M)[Cxo + Cxgr + Cxp + Cxg(ad/2V) + Ex 0?1 + T )
iz = (QS/M)[Crq + Crgpr + Cagh + Cag(@8/2V)] + Tz @
am = (QSE/lyy) €mg + Cmet+ Cmgd + Cmg(a&/2V)] + T 3)
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AWJSRA:

x = (QS/M)[Cxq + Cxgt + Cxgs + Cxq(aT/2V) + Cx_s02] +Tx @
ag = (QS/M)[Cyy + Cgpo + 6266 + ézq(qE/ZV) +C7Cjcj] +Ty (5)
am = (@S&/lyy)(Cmg + Cimget + Cmgb + Cimg (a¥/2V)] ©)

The coefficient terms for the Lear-Jet are those used in most studies of aircraft longitudinal
motion. The only nonlinear coefficient is a Cx term due to a nonlinear (o2 ) variation with angle of
attack. The model for the AWJSRA includes an additional Cz term due to the powered lift function
Cj (Cj = thrust of cold air/QS).

The thrust terms Ty and Ty for the AWJSRA were measured by the aircraft instrumentation.
However, for the Lear-Jet, the thrust was not measured and the thrust terms Ty, Tz, and Ty, were
taken as unknown parameters.

Equations (1) through (6) represent a standard form of the coefficient terms used for the data
analysis in the first part of this paper. Some of the effects of using alternative coefficient terms and the
general problem of choosing the number and type of coefficients will be discussed in the last section.

IDENTIFICATION METHODS

The aerodynamic coefficients were estimated using the regression and quasilinearization
identification algorithms. This application of regression (also called equations of motion or least squares)
is similar to the applications described in references 7 and 8. The application of quasilinearization (also
called modified Newton-Raphson) is somewhat different from that used in previous studies [(tefs. 1-4).
Most applications of quasilinearization have incorporated equations linearized about a nominal path;
however, this study incorporates the full nonlinear aerodynamic and kinematic equations.

Regression Method

This technique determines the set of constant coefficient values that minimizes the least-squares
functions:
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where ay, az, and am represent the measurements and ax, az, and Qm represent the estimated model
outputs (egs. (1)-(6)). From these formulations the unknown coefficients are determined by the well-
known matrix inversion procedure (refs. 7 and 8).
Quasilinearization Method
This technique, in contrast to the regression method, integrates the kinematic equations to

obtain estimated time histories of the aircraft states along with estimates for the aerodynamic coeffi-
cients. This technique minimizes a weighted least-squares function of the form

N
J=Z Y -Y1TW[Y - Y]

where Y represents the vector of estimated variables

YT = [a)&,aaeaé\-x:az’am]
and Y represents the vector of measured variables

YT = [u;w9q,0,aXsaZ,am]

The positive diagonal weighting matrix W is used to account for the relative confidence placed on
each of the measured variables. (For this study, the weighting values were taken as Wij = 1/0;2; see
table 1.) The equations of motion used with the quasilinearization method are of the form

iA1=g5x—avAv—gsinf;+lA3u , u(0) =ug @)
W=g§z+aﬁ+gcosé+ﬁw , w(0) =wo 8)
d=am+Bgq , 40)=qq ©)
6=q+By , 8(0) =00 (10)
ax = (V2 S/2M)[Cx + Cxoi + Cx g0 + éxq(ae/zfl) +Cx p08 ] +Tx an
a2 = (V2 S/2M)[Czq + Cpoft + 50 + czq(aa/zvn +T, (12)
am = (V2 S5/2lyy)[Cmg + Cm@ + Cmgd + Cmq(@Z/2V)] + T (13)

Al - = e . .

where V =/w? + 12, a = sin(w/V), and B represents unknown bias terms. (Equations (11) through (13)
represent the Lear-Jet; slight modifications as noted in equations (3) to (6) are incorporated for the
AWIJSRA.) With this formulation, initial estimates for the unknown parameter values are made (e.g.,
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from the regression results) and then the estimates are successively improved, in an iterative manner,
using the quasilinearization algorithm (refs. 1-6).

FLIGHT-TEST RESULTS

The aerodynamic coefficients were estimated using data recorded during maneuvers in which
the aircraft motions were excited by elevator inputs. Representative maneuvers are illustrated in fig-
ure 2 for the Lear-Jet and in figure 3 for the AWJSRA. These maneuvers start from steady-state trim-
med conditions and include elevator step inputs to excite the long-period phugoid motions and elevator
doublet inputs to excite the short-period motions.

The aerodynamic coefficients were estimated both for the total record and for individual short
records (see figs. 2 and 3). The short records (selected to be nearly identical) were analyzed in an
attempt to gain some indication of the relative standard deviations in the estimated coefficient values.
For the Lear-Jet, 13 short records (8 sec long) were available and, for the AWJSRA, 3 short records?
(40 sec long) were available.

Comparison of Estimated and Measured Time Histories

A comparison of measured flight time histories with those computed using the estimated
coefficient models for the Lear-Jet is presented in figures 4 and 5. Figure 4 presents the results
obtained by the regression method and figure 5, those obtained by the quasilinearization method. The
time histories illustrate that the aerodynamic coefficient model for the Lear-Jet provides an excellent
fit to the measured flight data. Values for rms difference (residual) between the estimated and mea-
sured time histories are listed in table I. The regression and quasilinearization techniques produce
somewhat different results. The regression method provides a significantly better fit to the measured
linear accelerations az and ax. The rms of the residuals (0a; and 0,y in table I) with the regression
methods are about 40 percent of the corresponding residual values with the quasilinearization method.
The rms of the residuals for the pitching acceleration (0ay,) are about the same for each method.

Time history comparisons for the AWJSRA are presented in figure 6 (regression results) and
figure 7 (quasilinearization results). These data illustrate that the aerodynamic coefficient models for
the AWJSRA provide a generally good fit to the measured data. Examination of the recorded flight
data for the AWJSRA indicates significant high-frequency noise in the measured values of ay and az,
which is believed to be associated with the higher levels of vibration on the AWJSRA as compared
with the Lear-Jet. The rms values of the residuals for the other flight data, am, u, w, q, and 8, appear
to be quite similar for both aircraft (table I).

! Although three samples do not represent a good basis for statistical analysis, a comparison of
these.three samples does give some indication of the scatter to be expected in the estimated coefficient
values.
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Comparison of Estimated Coefficients

The individual coefficient values estimated from the flight data are presented for the Lear-Jet
(table II) and for the AWJSRA (table III). Figures 8 and 9 present for each aircraft (in bar chart form),
the mean values, along with the standard deviations, normalized with respect to the average coefficient
values. These bar charts are intended to compare (in graphical form) the results obtained by the
regression and quasilinearization techniques.

In general, the agreement between the coefficients, as measured by each identification
technique, is better for the Lear-Jet (fig. 8) than with the AWJSRA (fig. 9). Also, the agreement (and
standard devijation) for the moment (Cry) terms are generally better than for the translational (Cx)
and (Cz) terms.

For both aircraft, the more important aerodynamic coefficients such as Cz,, Cx,, (or Cx o2 ),
Cmg» Cm 5 and Cmq are in good agreement. The standard deviations of these estimated parameters
are also relatively small. All the other parameters have higher standard deviations in their estimated
values, and generally, the mean values as measured by each method do not show such good agreement.
These comparisons also show that for those parameters with significant standard deviations (e.g.,
greater than about 10 percent of their mean values), the regression estimates have less standard
deviation than the quasilinearization estimates.

Comparison With Wind-Tunnel Values

The estimated coefficients values (tables II and III) are presented graphically in figure 10,
normalized with respect to their corresponding values as determined from the wind-tunnel tests. This
figure illustrates that the agreement between the flight and wind-tunnel values depends somewhat on
the identification technique. For almost all the coefficients, the regression values better agree with
the predicted values. A majority of the coefficients estimated by the regression technique are within
about +10 percent of the wind-tunnel values. The exceptions are Cz 5 Cmg» and Cm 5 for the Lear-Jet
along with Cz & and Cxy2 for the AWJSRA. Possible reasons for some of these differences between

the flight and wind-tunnel values have been discussed in previous studies.

The terms Cz 5 and Cxg account for the effects of the elevator on the linear forces. These
contributions of the elevator are quite small relative to the other forces acting on the airframe and as
such are difficult to measure accurately in flight. (Also, these terms are strongly coupled with Czq and
Cxq-) Previous studies (e.g., refs. 7, 19-21) have also noted the large standard deviations associated

with estimating these terms from flight-test data.

The Cp, term, representing the aircraft static stability, depends strongly on the location of the
center of gravity during the maneuver. For instance, an uncertainty of the cg location in the Lear-Jet
of 11 c¢m (5 in.) could account for the 30-percent difference in the predicted Cm,, (Wind tunnel Cm,,
corrected for cg location) as compared to the flight measured value. However, there is probably more
than just an uncertainty in the aircraft cg to account for this difference. The Cm terms measured for
the Lear-Jet are consistently lower than predicted. Several other studies (e.g., refs. 12, 19-22) have also
found consistently lower values for the Cy, terms measured in flight as compared with wind-tunnel
values.
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Discussion of Flight-Test Results

The results presented above show that both the regression and quasilinearization methods
provided similar results for the rotational mode. However, for the translational modes, the regression
method generally provides better results than the quasilinearization method. For instance, the regres-
sion method provides a better fit to the measured accelerations, less standard deviation in the estimated
coefficient values, and better agreement with the wind-tunnel values.

The differences to be expected between the regression and quasilinearization methods depend,
to a large extent, on the amount of measurement noise. Any noise in the measurement of the states «
(or w), V (or u), and q could cause bias errors with the regression method. Although the amount of
noise cannot be determined with certainty, the recorded data in figures 5(b) and 7(b) show very little
of what may be termed white or near white measurement noise (e.g., there is a low noise-to-signal
ratio). Apparently, for the flight-test situations considered in this study, there are no large amounts
of measurement noise that could cause significant errors with the regression method.

Any inaccuracy in estimating the states u, w, q, and 8 can cause errors with the quasilineariza-
tion technique. To minimize this type of error, an accurate mathematical model of the forces and
moments acting on each type of aircraft is required. For the flight-test situations in this paper, some
modeling errors are undoubtedly present which cause estimation errors with the quasilinearization
technique. As discussed next, the best form of the mathematical model to use for each aircraft is not
always obvious.

EFFECTS OF NONLINEAR TERMS IN THE MATHEMATICAL MODEL

The complexity of the model describing the aerodynamic characteristics depends on the aircraft
configuration, the flight conditions, the angle-of-attack region, the power-lift levels, etc. A best choice
of the number and type of coefficients to be used in the model is not always easy to determine. If the
purpose of the investigation is to estimate only the linear model of the aircraft, then there is finite num-
ber of possible terms that need be considered. However, if the purpose of the investigation is to provide
a best fit to measured flight data and provide an estimate of the nonlinear aerodynamic characteristics,
an unlimited number of nonlinear terms (e.g., polynomials, cross products, etc.) could conceivably be
used. Although some studies (e.g., refs. 3, 8, and 11) have considered the problems of choosing the
“best” form of the mathematical model for different types of aircraft, no effective procedure has been
established.

For the purposes of this paper, the choice of the number and types of nonlinear terms included
in the mathematical models was based on three factors:

(1) An examination of the nonlinear terms required to provide a good fit to the available
wind-tunnel or predicted aerodynamic data

(2) An examination of the nonlinear terms required to provide a good fit to the flight-test
data

(3) An examination of the standard deviation in the nonlinear terms as estimated from the
flight data.

132



These three factors are illustrated by the following example.

Figure 11 illustrates the effect of using successively higher order polynomials to model the
variation of Cx with a (for the Lear-Jet). Evaluation of the three factors yields:

(1) An examination of the wind-tunnel data (right side of fig. 11) shows that the use of
only a first-order polynomial does not provide a good fit to the data. Use of either
the second-order or third-order polynomial provides an excellent fit.

(2) An examination of the flight-test data (left side of fig. 11) shows results similar to the
wind tunnel, that is, a first-order polynomial does not provide a good fit to the data;
the second-order and third-order polynomials provide an excellent fit.

(3) An examination of the standard deviations in the estimated coefficient values (center
of fig. 11) illustrates that there is a slight increase in the standard deviations when the
second-order rather than the first-order polynomial is used. However, there is a large
increase in the standard deviations when a third-order polynomial is used.

For this example, the second-order polynomial form was chosen because it provides a
satisfactory fit to both the wind-tunnel and flight-test data and it provides estimated coefficient values
with a relatively small standard deviation. One may be tempted to include higher order polynomial
terms in identification but, as this example illustrates, the use of higher order nonlinear terms (e.g.,
third order or above for this example) can produce unsatisfactory large standard deviations in the
estimated coefficient values.

For this example (fig. 11), the selection of a good form of the mathematical model is fairly
obvious. However, for some of the other aerodynamic terms, the best form to use for the model is more¢
difficult to determine. Figure 12 illustrates the effects of using quadratic (o?) terms in each of the
aerodynamic equations.?

The effects of using quadratic terms on the standard deviations of the estimated coefficient
values are illustrated on the left side of figure 12. For each case, use of the quadratic terms results in
higher standard deviations in the estimated coefficient values. Some terms are affected much more
than others. With the Lear-Jet, for instance, the Cx,2 term can be estimated with a standard deviation
of about 10 percent of its mean value whereas the Cm_,2 has a 930 percent standard deviation about
its mean value. (The mean value for Cmp o2 is quite small,

The effects of using quadratic terms on the rms difference between the estimated and measured
time histories are illustrated on the right side of figure 12. For each case, use of the quadratic terms
provides a better fit to flight data. For the Lear-Jet, only one of the residuals, 0ay, is significantly
reduced by using a quadratic term. For the AWJSRA, none of the residuals show significant reductions
with use of the quadratic terms. (However, the high noise level on the measured ax tends to mask out
the improvement due to the addition of nonlinear terms.)

2 The results presented in figures 11 and 12 were obtained by the regression method.
Quasilinearization will produce higher standard deviations, particularly with the less important
nonlinear terms.
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In choosing the terms to be used in the aerodynamic equations, there is a tradeoff in
lowering the rms of the residuals or lowering the standard deviation of the estimated coefficient
values. For the flight-test data considered in this paper, the aerodynamic equations (egs. (1)-(6)) are
believed to represent a reasonable compromise between these two factors. For other flight conditions
with these aircraft (i.e., higher angles of attack, different power-lift levels, etc.) and for other aircraft
configurations, the use of additional nonlinear terms in the aerodynamic equations must be considered.

CONCLUDING REMARKS

This paper has reviewed some recent flight experience at Ames for the identification of
longitudinal aerodynamic coefficients. Results were presented for the Lear-Jet and the Augmentor
Wing Jet STOL Research Aircraft. Comparisons were made between results obtained by regression and
quasilinearization identification techniques. Also, the coefficients estimated by these techniques were
compared with values obtained from wind-tunnel experiments.

The results show that both identification methods provide nearly identical results for the
rotational mode (Cpy), but the regression method provides better results for the translational modes
(Cx and Cz). The regression method provides less standard deviations in the estimated coefficient
values and provides better agreement with the wind-tunnel values.

A majority of the coefficients estimated by the regression method are within about 10 percent
of the predicted values based on wind-tunnel tests. The exceptions are Cy &> Cmg, and Cyy & for the Lear-
Jet with CZ:S and Cxaz for the AWJSRA.

This paper illustrates that including nonlinear terms in the aerodynamic equations effect both
the standard deviation of the estimated coefficient values and the rms difference between the estimated

and measured time histories. The choice of the number and type of terms to be used in the aerodynamic
equations represents a compromise between these two factors.
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TABLE I.— RMS DIFFERENCE BETWEEN ESTIMATED AND MEASURED TIME
HISTORIES; LONG RECORDS

Lear-Jet AWIJISRA
Regression Quasilinearization Regression Quasilinearization

Oa, ,gunits 0.00885 0.0244 0.0127 0.0176

oay, g units .00105 .00260 .00605 .00788
Oar, »deg/sec? 1.34 1.12 .708 726

ou, , m/sec --- .829 --- 552

Ow , m/sec --- .263 --- 230

oq , deg/sec --- .276 --- 295

Og , deg --- 411 --- .630
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TABLE II.— COMPARISON OF ESTIMATED COEFFICIENTS AND WIND-TUNNEL

VALUES FOR THE LEAR-JET; FLAPS AND LANDING GEAR UP, LOW-

SUBSONIC MACH NUMBER, 1°S oS 7°.

Regression Quasilinearization

Long Short R;cords Long Short l;eco(;dsd T‘:ri::l(i]

Record | Mean | potiier | Reeord | Mean | pUEE | Rt 13)
Czo 0.111 -0.089 0.081 0.164 -0.077 0.134 0.117
Czo -5.118 -5.131 .038 -5.216 -5.271 060 -5.140
Cz 5 -.342 -373 17 -701 -.481 .240 -.470
Czq -21.781 -22.700 3.231 -24.363 -20.988 8.723 -7)*
Cxo -.027 -.028 .005 -.030 -.030 016 -.027
Cxq 153 142 .041 173 .180 .046 .161
Cxg2 2.879 2973 294 2.858 2.776 325 2.558
Cx 5 057 062 016 .085 .097 .033 054
Cxq 1.214 1.363 .634 1.117 1.861 1.021 (.7)*
Cmg .066 074 .028 069 .071 035
Cmy -.810 -.817 .030 -.816 -817 .030 -1 12%*
Cmg -1.036 -1.084 .062 -1.052 -1.086 048 -1.34**
Cmq -16.460 -17.816 1.835 -17.638 -18.444 1.320 (-18)*

*Predicted tail contribution only, q + &.

**Adjusted for cg location and Cp.
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TABLE II1.— COMPARISON OF ESTIMATED COEFFICIENTS AND WIND-TUNNEL
VALUES FOR THE AWJSRA; FLAPS = 67°; LANDING GEAR DOWN, LOW-

SUBSONIC MACH NUMBER, 0.3 < C;<0.4, -2°<ag10°.

Regression Quasilinearization

Long Short Records Long Short Records TWind1

v | | Sl alita | wan | S| Lo
Czo -1.197 -1.193 0.029 -1.465 -1.403 0.094 -1.162
Czy -5.046 -5.071 122 -6.195 -5.767 137 -4.794
Czg -.692 -.683 .006 -.165 -.338 .202 -.550
Czq -17.282 -17.016 7192 10.006 -3.107 2.941 (-10)*
Cxo =327 -327 .001 -329 =327 .013 -.294
Cxq 1.318 1.323 .085 1.380 1.377 273 1.329
Cxq2 2.376 2.225 .603 2.273 2.395 1.144 3.560
Cxg .163 .184 .040 163 A11 .061
Cxq 1.232 1.573 571 3.481 1.348 1.982 )*
Cmyg .057 .056 .003 .041 .037 .005
Cmy -.560 -.553 .038 -501 -450 .067 - 52%*
Cmg -2.036 -2.050 .006 -1.902 -1.969 .046 -2.05%*
Cmq -29.261 -29.718 1.231 -31.593 -32.168 722 (-35)*
CZ(‘j- -3.001 -3.003 .106 -1.958 -2.156 .328 -3.45

*Predicted tail contribution only, q + &.

**Adjusted for cg location and Cpg,.
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Figure 2.— Flight maneuver for the Lear-Jet.
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Figure 3.— Flight maneuver for the AWJSRA.
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Figure 4.— Estimated model outputs compared with direct measurements for the Lear-Jet;

regression method.
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Figure 5.— Estimated model outputs compared with direct measurements for the Lear-Jet;
quasilinearization method.
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Figure 6.— Estimated model outputs compared with direct measurements for the AWISRA;
regression method.
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Figure 7.— Estimated model outputs compared with direct measurements for the AWJSRA;

quasilinearization method.
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APPLICATION OF A KALMAN FILTER IDENTIFICATION TECHNIQUE
TO FLIGHT DATA FROM THE X-22A VARIABLE STABILITY V/STOL AIRCRAFT*
. +
J. Victor Lebacqz

Calspan Corporation
Buffalo, New York 14221

ABSTRACT

A digital identification technique based on Kalman filter theory has been
developed for the estimation of V/STOL aircraft stability and control param-
eters from flight data. The emphasis of this paper is on the application of
this technique to flight data from flying qualities experiments using the
variable stability X-22A V/STOL aircraft. The estimation algorithm is briefly
reviewed, experimental and data acquisition procedures used in the X-22A
flight programs are outlined, and specific problem areas such as the determi-
nation of noise statistics and selection of pilot inputs to enhance identifi-

ability are discussed. Results are presented for a wide range of simulated
dynamic configurations.

SYMBOLS
Iﬁ moment of inertia about body X-axis, ft-1b sec2
Ig moment of inertia about body Y-axis, ft-1b sec2
I% moment of inertia about body Z-axis, ft-1b sec2
I;% product of inertia in body axes, ft-1b sec?
K, =(Zq:EJQQ nondimensional inertia coupling in roll
Ky =(de@»ﬁg,nondimensional inertia coupling in yaw
Ly = 1/I, 9L[X) dimensional roll moment derivative, (rad/secz)/( )
- 2 -1 7,
Ly, (1 - Zeg /LI (Ly+ FEM,), (rad/secty/ ()

* The development of the identification technique discussed herein was sup-

ported by the Naval Air Systems Command under Contract N00019-69-C-0534.
The two X-22A flying qualities research programs that are discussed were
sponsored by the Naval Air Systems Command, the National Aeronautics and
Space Administration (LRC), the Federal Aviation Agency, and the Air Force
Flight Dynamics Laboratory under Contracts N00019-71-C-0044 and
N00019-72-C-0417.

+ Associate Aeronautical Engineer
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==UQ? 9NU©() dimensional pitch moment derivative, (rad/secz)/( )

N

=1/Ié 9AV@()dimensiona1 yaw moment derivative, (rad/secz)/( )
/ - Z
= (- L/, L) v, + TELO)s ad/sechy/ ()

body Y-axis acceleration, 57.3 ft/sec2

2 X2 X

~ N
N

body axis roll rate, deg/sec

body axis pitch rate, deg/sec

Ty

p

9

» body axis yaw rate, deg/sec
t time, seconds

U body X-axis velocity, ft/sec
vV true velocity, ft/sec

w body Z-axis velocity, ft/sec
&»

= 1/M 9X/3() dimensional X-force derivative, (ft/secz)/( )

Yoy = 1/M 2Y/2() dimensional Y-force derivative, (ft/secz)/( )
Z() = 1/M 2¥/2() dimensional Z-force derivative, (ft/secz)/( )
&~ angle of attack, degrees

Y] angle of sideslip, degrees

7 glide slope angle, degrees

Ses longitudinal stick position, positive aft, inches

%05 lateral stick position, positive right, inches

§ep rudder pedal position, positive right, inches

£, damping ratio of Dutch roll characteristic response
g;r damping ratio of short term longitudinal response
8 pitch attitude, degrees

c?) variance of ( ) in units of ( )

Ze roll mode time constant, seconds

¢ roll attitude, degrees

|Q¢3,d magnitude of roll-to-sideslip ratio in Dutch roll component
Wy Dutch roll undamped natural frequency, rad/sec

longitudinal short term undamped natural frequency, rad/sec

( ), reference or initial condition of ()

(') time rate of change of ( ), ( )/sec

150



INTRODUCTION

A prerequisite in the use of response-feedback variable stability air-
craft to obtain flying qualities data is an accurate method for estimating
stability and control parameters from flight data. In general, experimental
flying qualities investigations seek to correlate dynamic characteristics of
an aircraft in the performance of a prescribed task to pilot opinion of the
suitability of the characteristics for that task. Variable stability aircraft
incorporate electronic implementation of control laws that vary the response
characteristics of the aircraft in a prescribed manner. The most prevalent
mechanization of this capability, and the one used in the X-22A V/STOL variable
stability aircraft, is the response-feedback system. With this technique re-
sponse variables of the aircraft are sensed directly and used to command con-
trol deflections proportionally, thereby changing the closed-loop aircraft
characteristics; by varying the matrix of feedback gains, a wide variety of
aircraft characteristics can be simulated for piloted evaluations. Unlike a
ground simulator or model-following variable stability aircraft, however, the
resulting dynamic characteristics are not accurately known a priori; it is
therefore mandatory to have an accurate and efficient means of identifying the
characteristics obtained from flight records.

Since the inception of the variable stability aircraft in the early 1950's
by the NACA and Cornell Aeronautical Laboratory (now Calspan Corporation),
this problem of identification of the simulated dynamics, both for calibration
purposes and for the correlation of pilot opinion ratings with the achieved
dynamic configurations, has been of extreme theoretical and practical concern.
Early methods included various analytic treatments based on hand measurement
of recorded responses to prescribed inputs and matching the responses with the
outputs of an analog computer (References 1 and 2). With the advent of the
digital computer, it became feasible to handle large amounts of data that
might require numerical analyses. This capability led first to equation-error
techniques (Reference 3) and then to response-error methods (References 4, 5,
and 6), which were applied with various degrees of success to the aircraft
identification problem. As is by now well known, however, accurate identifica-
tion of aircraft parameters requires advanced methods that can treat both
equation errors (process noise) and response errors (measurement noise). Meth-
ods which have this capability include various techniques predicated upon
maximizing a likelihood function (References 7 and 8) and techniques which ex-
tend Kalman filter theory to nonlinear situations (Reference 9).

This paper discusses the application of the identification technique
developed in Reference 9 to flight data from the X-22A variable stability
V/STOL aircraft (Figure 1). The X-22A aircraft is a unique research tool
which is capable of reproducing a wide range of vehicle dynamic characteristics
at many fixed-operating STOL flight conditions as well as through a complete
V/STOL transition (120 kts=>0 kts). To date, the aircraft has been used in
two STOL flying qualities programs, one investigating longitudinal short-term
dynamic characteristics in the landing approach (Reference 10), and the other
studying lateral-directional dynamic characteristics and roll control power
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requirements for landing approach (Reference 11). The large variety of dynamic
situations that have been simulated, coupled with the relative inaccuracy of
aerodynamic data for the basic aircraft and the requirement for accurate yet
economically efficient identification, provides an extensive data base for the
evaluation of the practical usefulness of an advanced identification technique.

The paper is organized as follows. The next two sections give a brief
review of the estimation technique and a summary of the data acquisition and
handling procedures used in the X-22A flight programs. The succeeding two
sections discuss the selection of the input information required by the identi-
fication algorithms and the importance of the aircraft control inputs to en-
hance identifiability. Representative results from both the longitudinal and
lateral-directional experiments are then presented, followed by some concluding
remarks.

IDENTIFICATION TECHNIQUE

The identification technique used on the X-22A flight data has been de-
scribed in detail elsewhere (References 9, 12), and hence will be discussed
only briefly here. The central idea is to obtain a suboptimal minimum variance
estimate of the parameters (and states) from the measured data for generally
nonlinear systems by extension of Kalman filter theory. To this end, we con-
sider an augmented state consisting of the aircraft states and the parameters
to be identified; the resulting state equation is, of course, nonlinear even
if the unaugmented state equation is linear, and therefore some form of approx-
imation to the optimal nonlinear filter is required. A common approximation is
to use an extended Kalman filter to estimate the states; this technique,
however, has been shown to yield biased estimates, the cause for which may be
viewed as inaccuracies in the reference trajectory about which the lineariza-
tion takes place. To improve the reference trajectory, therefore, a locally
iterated filter-smoother is used (References 9, 13, 14), which is possible be-
cause of the recursive nature of the technique. This procedure updates the
reference trajectory between every two time points through alternate one-
stage extended Kalman filtering and one-stage smoothing, the iterations con-
tinuing until there is negligible change in the reference trajectory between
successive iterations. It can be shown formally that this procedure reduces
the bias caused by state and measurement nonlinearities (Reference 9).

To further improve the parameter estimates, a suboptimal fixed-point
smoothing algorithm is available as an option in the technique. The fixed-
point smoother is desirable as a means of improving the initial estimates of
the states (i.e., at ¢, ); since the parameters are assumed to be random vari-
ables with constant mean, the improved initial estimate (using all of the data)
from the smoother may result in improved estimates of both the parameter values
and their variances. The fixed-point smoother uses the final reference tra-
jectory from the filter-smoother for its linearization, and in fact is mech-
anized to work in conjunction with it in an "on-1line'" fashion.
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The salient features of this identification technique may be summarized
for reference as follows:

1,

The technique seeks minimum variance estimates (i.e., the conditional
mean) of general systems described by nonlinear state and measurement
equations including both process and measurement noise. The formula-
tion of the algorithms is predicated on this generality; hence for
example, the implicit nonlinearity introduced by augmenting the state
with the parameters to be identified does not compromise the formula-
tion. Strictly speaking, the technique may be theoretically imper-
fect for systems which can be described by linear state and measure-
ment equations, since we still approximate the nonlinear augmented
system with a linearized procedure. From a practical point of view,
however, the local iteration procedure appears to achieve a suffi-
ciently good reference trajectory to obviate this imperfection in
applications.

The technique is recursive in nature -- both the iterated filter-
smoother and the fixed-point smoother operate on the data points in
a sequential fashion. It is theoretically possible to apply the
algorithms on line in real time, although this capability is not
included at present in the X-22A data acquisition equipment. This
recursive nature of the technique tends to eliminate the need for
digital or optimal processing of flight data prior to identification
to obtain accurate initial parameter estimates, a need which is
characteristic of methods which use the entire data record initially
and require approximate gradient techniques to perform the required
optimization. This insensitivity to the initial estimates will be
demonstrated by example in a later section of this paper.

The technique as currently employed does not estimate the measurcment
and process noise covariances. Methods which directly maximize the
likelihood function do perform this estimation well for linear sys-
tems (Reference 15), and the lack of this capability is somewhat of
a drawback of the technique. For the application of the technique
to X-22A flying qualities flight data, however, the deficiency is
minor, as (1) the model structure is generally well defined and
calibration flight records are obtained in relatively smooth air,
both of which decrease the process noise in the system, and (2) the
quality of the data acquisition procedures and measuring sensors is
high enough to obtain valid a priori measurement noise statistics
from the flight records. The determination of the process and mea-
surement noise covariances for the X-22A is discussed in more detail
in a later section.

DATA ACQUISITION EQUIPMENT AND PROCEDURES

The data acquisition systems and procedures used for X-22A flight programs

153



are described in References 10 and 16, and only those aspects which bear on
identification of the flight records are repeated here.

A schematic of the digital data acquisition system is shown in Figure 2,
Sensors in the aircraft measure all pertinent quantities, such as rigid body
responses, control deflections, and variable stability system command signals.
This information is sampled 200 times per second and telemetered via an L-band
pulse-code-modulated telemetry link to a mobile ground station, where it is
decoded and recorded on line on the '"bit-stream'" recorder. For post flight
data analyses, the bit-stream information is processed through the digital
mini-computer to produce an IBM 370/65 compatible digital tape.

The data on this digital tape are then processed and edited to be com-
patible with the identification computer programs. In the first X-22A flight
program, the data were initially digitally filtered by a third-order
Butterworth filter in order to reduce the sampling rate to the 1/0.08 samples/
second of the identification technique without introducing aliasing errors. It
has been ascertained experimentally, however, that this filtering is not neces-
sary; hence, on the second program, no digital or other filtering of the
telemetered data was performed.

The digital data are also transformed from measured variables to equations-
of-motion variables at the center of gravity. These transformations are not
strictly required for the identification algorithms, but result in more effi-
cient (i.e., less costly) identification. The primary transformations required
are on the aerodynamic motions, since angle of attack and sideslip angle are
measured on a boom in front of the aircraft; in addition, the longitudinal
equations of motion are written in terms of body-axis vertical velocity, to
which angle of attack is converted.

CHOICE OF REQUIRED INPUT INFORMATION

In common with any technique based on Kalman filter theory, the following
input information is required for the algorithm:

1. Initial estimates of the parameters.

2. Variances of the initial estimates.

3. Reference conditions of the states.

4. Measurement noise variances.

5. Process noise variances.
The initial parameter estimates are obtained from a conventional least-squares
equation error method, which also produces estimates of the parameter vari-
ances. It has been observed experimentally that the variance estimates ob-

tained by this method do not correctly represent either the absolute or the
relative accuracy of the initial parameter estimates., Two alternatives may be
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taken. The first is to multiply the initially estimated variances equally by
an arbitrary factor. The second, which is more appealing theoretically, is to
use an independent technique to calculate them. Since it is clear that the
initial variances should reflect the identifiability of the parameters to some
extent, which is in turn dependent on the control input used, one means of ob-
taining the variances is to obtain the Cramer-Rao lower bound on the covari-
ance of the parameter estimates for the given data. The variances obtained by
this method would be expected to be more correct in their ratios to each other,
and again can be multiplied by an arbitrary factor and used as the initial
variances. For the results presented in this paper, the method of multiplying
the equation-error computed variances by a constant factor was used. This
choice was dictated by operational considerations: the need to process large
quantities of data in a rapid fashion during calibration flights results in
eliminating if possible intermediate computing steps, such as the separate
calculation of the Cramer-Rao lower bound. In general, experimental experience
has demonstrated that, for the type and quality of the identification records
for the X-22A, the more direct method of uniformly increasing the equation-
error method variances appears to be adequate.

The measurement noise statistics are obtained by visual examination of
the flight records. Generally, the '"hash" on the records is assumed to equal
the variance of the measurement noise, which provides a conservative value.
This estimate is then checked qualitatively by comparing plots of the residual
sequences of the filter operation with the assumed noise statistics, and re-
adjusting the statistics if required. The X-22A data acquisition system pro-
vides data with excellent signal-to-noise ratios in general, and therefore this
method of estimating the measurement noise variances is sufficiently precise.
Again, in the interests of rapid and efficient identification procedures, the
measurement noise statistics are kept the same for all data records if possible.
For the bulk of the results presented in this paper, these statistics are:

*
Longitudinal Lateral-Directional

0, = 1.0 (ft/sec) cs = 0.2 (deg)

6, = 0.25 (ft/sec) op = 0.1 (deg/sec)

6g = 0.15 (deg) o, = 0.1 (deg/sec)

oy = 0.1 (deg/sec) 6g = 0.1 (deg)
on, = 10.0 (57.3 x_ft/sec?)
oy, = 3.0 (deg/secz)

LA 2.0 (deg/secz)

In addition to selecting the measurement noise statistics from visual examina-
tion of the data, the reference (or initial) conditions of the states are
chosen to be the first datum points ( t 2 0) on each record tape. Since
calibration identification records of the evaluation configurations are
usually obtained about trimmed flight, the first point on the data tape is

* Acceleration measurements were not used during the longitudinal
flying qualities program, as will be discussed in the section
on results.
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generally a valid reference condition. The fixed point smoother may be used
to obtain an estimate of the initial conditions if necessary, but this compu-
tation is not generally required for the X-22A data.

The most difficult choice of required input information is that of the
process noise statistics. To some degree, the process noise covariance matrix
Q is a "fiddle parameter" in the algorithm which may be used to improve its
performance for a given data record. On the other hand, the requirement for
rapid post-flight identification as nearly automatic as possible leads to a
desire to hold these statistics at a fixed value for all flight records. To
make this tradeoff, then, it is important to define precisely what the sources
of process noise might be. For the X-22A data, there are essentially three
sources of process noise:

1. Gust or turbulence inputs.
2. The variable stability system.
3. Modeling errors.

Of these, the gust inputs are of the least significance for the records that
are analyzed, because the majority of calibration identification records are
obtained in turbulence-free air to facilitate rapid checks on the frequency
and damping of prevalent rigid-body modes of motion. The variable stability
system is the source of '"noise'" both as a result of its dynamics not being
included in the model and through its operation on noisy measurement signals.
The primary source of modeling errors, however, is the fundamental restriction
that we seek the best linear model for the aircraft dynamics that will fit the
data, as most flying qualities parameters are defined in terms of linear
systems.

With regard to the choice of process noise statistics, therefore, the
following considerations are relevant. For simulated aircraft that are highly
augmented with regard to the X-22A (e.g., higher rigid body frequencies and
dampings), the assumption of a linear model becomes increasingly valid, but
the process noise added by the variable stability system increases. For simu-
lated aircraft whose rigid body motions are similar to the X-22A (very little
augmentation), the effects of the variable stability system are reduced but
nonlinearities may start to become important. The magnitude of the process
noise in these two cases may be considered approximately the same. The worst
case is one in which the X-22A must be highly de-augmented, as linear aero-
dynamic terms may approach zero, thereby accentuating nonlinearities, and the
variable stability system effects again become larger. For this case, it may
be necessary to assume more process noise.

For identification of the X-22A data, it is assumed that one set of pro-
cess noise statistics is acceptable for all configurations save those which
involve the de-augmentation of several stability derivatives, and this set is
used for the rapid processing of the data. The values of the statistics are
selected primarily by iteration on early data sets to achieve adequate per-
formance, and then held constant. For example, most of the lateral-directional
results presented in this paper used the following process noise variances:

156



,6' equation : 0.6 (deg/sec)
£ equation : 0.2 (deg/sec?)
7 equation : 0.1 (deg/secz)

IDENTIFIABILITY OF DATA

It is well known that the control inputs can significantly affect the iden-
tifiability of a data record (References 9 and 17). For a given input, the
best identification performance possible, in the sense of minimum mean square
estimation error, is given by the Cramer-Rao lower bound: that is, the ele-
ments of the Cramer-Rao matrix are the lowest variances on the estimates that
can be achieved. It is therefore possible, for example, to design inputs based
on a minimization of this lower bound (Reference 17). The Cramer-Rao lower
bound is the inverse of the Fisher information matrix, the elements of which
are the sensitivity functions, and so maximization of some norm of this matrix
may also be used to design inputs (Reference 9), although the two methods are
not exactly equivalent. Implementation of such inputs in a flight program,
however, is difficult, and hence approximations that provide at least some
benefit to identifiability are sought.

In flying qualities experiments, inputs for identification records have
historically been simple analytically and chosen to accentuate some particular
features of the response. Examples include rudder doublets for the Dutch roll
characteristics, and aileron steps for roll mode time constants and @/, trans-
fer function characteristics. It is easy to demonstrate that these inputs do
indeed provide large sensitivities for the stability derivatives which have
the primary influence on the characteristics of interest, but that other deriv-
atives may not be identifiable with any accuracy at all. The usual procedure
that is followed is to obtain several records with different inputs tailored
heuristically to certain characteristics and thereby obtain in a composite fas-
hion the total identification; this procedure was used for the longitudinal
dynamics presented in this paper with the primary input being a longitudinal
stick doublet. This method was justifiable for these data since the angle of
attack stability and pitch-rate damping were essentially the only stability
derivatives varied in the experiment, and a doublet maximizes the sensitivity
of angle of attack and pitch attitude to these derivatives.

For the lateral-directional program, however, a majority of the stability
derivatives was varied to achieve the desired dynamic configurations, and
therefore a single simple input could not provide sufficient identifiability.
In general, for amplitude-constrained inputs (which are necessary to aid the
assumption of linearity), it can be shown that "switching" type inputs in-
crease the sensitivity for most parameters, the frequency of switching being
dependent on the dynamic characteristics of the system (References 17, 18).

It was therefore decided to attempt to have the pilots provide this type of
input in both yaw and roll. The advantages of using the pilot, rather than a
programmed automatic input, include his capability to maintain the aircraft
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responses within linear limits and his ability to sense to some degree the
characteristic frequencies of the aircraft to provide switching cues. The
disadvantage of using pilot inputs is primarily his tendency to act as a feed-
back controller; in that case, the inputs become linearly related to at least
one aircraft output, which is inimical to good identification (Reference 9).

To check on the '"goodness' of the inputs, two alternatives are available.
First, as we have discussed, the Cramer-Rao lower bound may be calculated for
the record using the estimated stability derivatives. 1In a relative sense
between several records, however, it is not necessary to perform this addition-
al calculation. If we assume that the identification technique approaches an
efficient estimator (unbiased, minimum variance), then the final variances of
the parameters computed by the technique should approach the Cramer-Rao lower
bound (Reference 9); therefore, a comparison of the magnitudes of the diago-
nal terms in the final covariance matrix provides some indication of the iden-
tifiability. It is also instructive to normalize this matrix and examine the
normalized covariances between the parameters, as high value (e.g., > 0.9)
indicates a strong degree of linear dependence. An example of two inputs for
the same configuration is given in the next section; in general, the pilot
inputs used in the lateral-directional program provide good identifiability.

APPLICATION TO FLIGHT DATA

Longitudinal Dynamics

The first X-22A flying qualities program investigated the effect of short-
term longitudinal dynamic characteristics for STOL landing approach (Refer-
ence 10). Sixteen combinations of short-term frequency and damping were eval-
uated during visual and simulated instrument approaches at a representative
glide slope angle of 2" = - 90, The primary derivative variations made with
the variable stability system in this program were angle-of-attack stability
(M, ) and pitch rate damping (A4¢ ), as these derivatives have a major influ-
ence on the short-term characteristics.

The assumed equations of motion for the identification process are written
in body axes, and include nonlinear kinematic and gravitational terms but only
linear aerodynamic terms; they are:

it

4 + wq +g5()79 X0+Xu (u»ao)+X”,(w-u5)+)(5‘£5(d;5—f£so)

\

w - ug - g Cos 6 Zo + £, (a—ao)+ zZ, (w-w)+ 26;5 (025— "t:so)

g = M,* M, (u-u)+M, (g-9 )+ M, (w—ag)*“MJEs(f“-é;s)

o
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Here, «, , &, , s, , and ¢, are the reference conditions about which
linearization is assumed valid, and the terms X, , Z, , /), are included to
accomnt for a possible off-trim condition.

Three representative sets of results of the identification of these con-
figurations are shown in Figures 3 - 5. These results are obtained using the
measurement noise statistics given in an earlier section. Neither accelera-
tion measurements nor process noise were used on these records. In general,
as is discussed in Reference 9, the use of the acceleration measurements tends
to provide better estimates of the parameters; in particular, it is obvious
that the control derivatives should be more accurately identified. In this
X-22A experiment, the 7, accelerometer malfunctioned and the 74 accelerometer
signal was compromised by a bias introduced by accelerometer stiction; there-
fore, the identifications were performed using only the state measurements.
The assumption of no process noise was prompted primarily by the relative
simplicity of the identification problem in this case (e.g., the interest in
identifying primarily only two derivatives). With the absence of process
noise, the option of the fixed-point smoother was not used; in addition, only
one iteration of the locally iterated filter-smoother algorithm was required.

These three examples represent quite different levels of augmentation of
the X-22A and resulting short-term dynamics. Configuration 6 in Figure 3 has
a larger angle of attack stability than the basic airplane; Configuration 13
in Figure 4 has characteristics similar to the unaugmented X-22A; Configura-
tion 15 in Figure 5 is de-augmented in both angle of attack and pitch rate
stabilities. In all cases, the calculated time history from the identified
parameters agrees well with the data. It is also worth noting that other
means of identification, such as analog matching, were used on this program,
and agreed well with the digital results.

Lateral-Directional Dynamics

The second X-22A flying qualities program, just completed, investigated
lateral-directional flying qualities and roll control power requirements for
STOL landing approach. This program used the variable stability system to a
far greater extent than the first, as all of the derivatives in the roll and
yaw moment equations were varied. Primary variables in the experiment were
the roll mode time constant (3 values), the Dutch roll frequency (2 values),
and the roll-to-sideslip ratio (2 values), out of which seven basic dynamic
configurations were chosen. In addition, for each of these the yaw due to
aileron (and thereby the zeros of the ®/S54s transfer function) was varied,
and, for selected cases, the available roll control power was electrically
limited. The demands on the identification technique were therefore con-
siderably larger on this program, both in terms of required accuracy and,
from an operational point of view, in terms of the vast quantity of calibra-
tion records to be analyzed during the set-up phase.

The identification of the lateral-directional data was performed using
the following set of body-axis equations of motion (again, only linear
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aerodynamic terms are included):

A =—r;’“-6 +(-;'—’ +3%)7o+(—‘;t-/)r+ 9 sin ¢ +_é_

pom ka0 ) L G T g e T
r o= AQ;/Q + (Ac; + kﬁv'Z%iF) o+ Np 7+ /V&m;d;s AQ;P 8,7 N
¢ = p+%sz'n¢+5§; cos ¢

These equations assume 'small" & , « , and B, and account for the fact that
the body axes used for the measurements are essentially the principal axes

of the aircraft. In addition, for most of the calibration records the longi-
tudinal aircraft motions are negligible, and hence the inertia coupling terms
K, and K, do not appear in the identified results.

Three representative examples of the lateral-directional identification
results which span the dynamics investigated in the program are shown in
Figures 6, 7, and 8. Configuration 1 in Figure 6 has highly augmented roll
damping and de-augmented directional stiffness; Configuration 4 in Figure 7
has augmented directional stiffness, approximately the same roll damping as
the X-22A, and de-augmented dihedral effect; Configuration 6 in Figure 8 is
similar to Configuration 4 except that the roll damping is highly de-augmented.

The results shown in these figures were obtained by the '"production line"
techniques dictated by the exigencies of a flight program as discussed earlier;
that is, the set of measurement and process noise statistics presented in a
previous section of this paper were used uniformly. The initial covariance
matrix of the estimates was also obtained by simply multiplying the least-
squares variances by a constant factor; the factor used is a very large 103
to ensure sufficient filter gain. The examples do not include the use of the
fixed-point smoother algorithm; experimental experience has shown that the
first data point provides suitable initial conditions, and that the locally
iterated filter-smoother performance is sufficiently good to obviate the ad-
vantages of smoothing the estimates for these cases with linear aerodynamics.

Effect of Initial Estimate

As was discussed in an earlier section, the recursive nature of the
locally iterated filter smoother algorithm appears to be advantageous in that
the results of an identification run are fairly independent of the accuracy of
the initial estimate. Figure 9 gives the results of identifying the same data
as in Figure 7, but with the initial estimates set at zero. The initial
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variances, measurement noise statistics, and process noise statistics are
identical. As can be seen, the derivative estimates and modal characteristics
are identical. This demonstrated insensitivity to the initial estimates and
resulting lack of non-uniqueness problems is extremely valuable to the 'pro-
duction line" identification required on flying qualities programs, as it
eliminates the need for any optimal processing of the data prior to identifi-
cation.

Effects of Control Inputs

As we have discussed, the time history of the control inputs is very im-
portant to obtain valid identification results. In Figure 10, the identifica-
tion of the same configuration as in Figure 7 is shown, but from a different
flight and hence with different control motions. The quality of the time
history matches is roughly equal, and in fact the final variances of the esti-
mates are generally within a factor of two of each other. It is useful, then,
to compare the normalized covariances, a few of which are listed in the table
below.

CONFIGURATION 4, COMPARISON OF NORMALIZED COVARIANCES

Parameters Figure 7 Figure 10
Lp=L -.151 .721
Np =Ny -.130 .608
Ne'~Lg -.376 -.437
Lg-Lp .470 -.230
Lgpg~Lp -.769 -.397
L™ Moy .157 -.079

Clearly, each input increases the identifiability of some parameters at the
_expense of others. Neither can be considered an "optimum' for this configura-
| tion, but both yield covariances that indicate adequate identifiability.

CONCLUDING REMARKS

This paper has addressed the application of a digital identification tech-

nique based on Kalman filter theory to flight data from the X-22A variable
stability aircraft. Over 300 flight data records were analyzed with this tech-
nique on the second X-22A flight program alone, and the emphasis of the paper
has therefore been on the practical aspects of identifying many data covering
a wide range of dynamic characteristics as simulated by the X-22A aircraft.
A general conclusion that may be stated as a result of this unique experimen-
tal experience is that the technique provides a useful and efficient tool for
identification of stability and control parameters from flight data, and, in
fact, that it can be applied in the "production line" fashion required to
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process large quantities of data rapidly during a flight program with little
loss of accuracy.

Specific conclusions that may be drawn from the results discussed in this

paper concerning the application of this technique to the X-22A flight data

are.
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. The locally iterated filter-smoother algorithm developed for
nonlinear systems provides very good identification results for
the quasilinear (linear aerodynamics) systems discussed in
this paper.

. The recursive nature of the technique appears to offer the
advantage of insensitivity to the initial parameter estimates
for X-22A data, thereby eliminating any necessity for data
processing prior to identification.

The required input information to the algorithm (i.e., the
covariance matrices) may be held essentially constant for
"production line' identification during a flight program after
an initial jteration period.

The control input time histories are very critical to good
identification results. Pilot inputs which attempt "switching"
near characteristic frequencies provide good identifiability.
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HELICOPTER DERIVATIVE IDENTIFICATION FROM ANALYTIC
MODELS AND FLIGHT TEST DATA

By John Molusis and Stan Briczinski
Aerodynamicists, Aeromechanics Branch

Sikorsky Aircraft

Division of United Aircraft Corporation
SUMMARY

Recent results of stability derivative identification from helicopter
analytic models and flight test data are presented. Six and nine degree-of-
freedom (DOF) linear models are identified from an analytic nonlinear helicopter
simulation using a least square technique. The identified models are compared
with the conventional partial differentiation method for obtaining derivatives
to form the basis for interpretation of derivatives identified from flight data.
Six degree-of-freedom models are identified from CH-53A and CH-5LB flight data,
using an extended Kalman filter modified to process several maneuvers simul-
taneously. The a priori derivative estimate is obtained by optimal filtering
of the data and then using a least square method.

The results demonstrate that a six DOF identified model is sufficient
to determine the low frequency modes of motion, but a nine DOF rotor/body model
is necessary for proper representation of short-term response.

INTRODUCTION

Because of their complexity and coupled behavior, helicopters
are prime canditates for derivative identification. For example, some
anelytic models incorrectly predict high speed dynamics associated with
articulated rotor helicopters. Another phenomenon not predicted accurately
by many existing models is rotor tip path plane oscillation, which places
upper limits on the feedback gains used in stability augmentation of many
helicopters. Isolation of these discrepancies is smong the motivating factors
for pursuing derivative identification, but there has also been a general need
for identification to provide correlation with stability and control prediction
techniques.

Identification requirements for articulated rotor helicopters differ
from fixed wing or other VTOL aircraft primarily in the following ways:

1. The helicopter has a large number of degrees of freedom (DOF), all
of which are highly coupled and many of which are significant. In addition to
the 6 DOF of the body, each blade of the articulated rotor has & flapping DOF
and a lag DOF. (A number of bending DOF may also be used to describe the
dynamics of each blade more accurately.)

175



2. Due to the rotary characteristics of the helicopter, linearization
of the equations of motion results in a model with periodic coefficients.

3. The plant driving noise and measurement noise are usually larger
for helicopters than for fixed wing sircraft.

4. The basic helicopter has long period instabilities and, in some
cases, has unstable Dutch roll roots.

To our knowledge, the first attempt at using advanced estimation
techniques to obtain derivatives from helicopter flight test data was presented
in Reference 1. The particular problems related to helicopter identification
(some of which are mentioned above) were discussed, and methods were proposed
for solution. References 2 and 3 applied the methods proposed in Reference 1
to helicopter flight test data. In addition, Reference 4 concentrated on
obtaining derivatives from an analytic computer model for a 9 DOF helicopter
description.

This paper summarizes results obtained to date at Sikorsky Aircraft in
helicopter identification and indicates future research areas.

SYMBOLS

L Rolling moment with respect to roll rate stability

P derivative

Xu Longitudinal force with respect to longitudinal velocity
stability derivative identified from flight data

Yu Lateral force with respect to longitudinal velocity
stability derivative identified from flight data

ZBIS Normal force with respect to longitudinal cyclic control

stability derivative

HELICOPTER ANALYTIC MODELS

Description of Linear Models Under Investigation

Four linear models are obtained from a Sikorsky nonlinear computer
helicopter simulation program called General Helicopter. This nonlinear model
incorporates 6 independent blade flapping DOF in addition to the 6 body DOF.

The helicopter under analytic investigation is the CH-53A at 100 kts, 33,500 1bs,
with an aft c.g. location. The linear models are:
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1. 6 DOF guasi-static model derived by independently perturbing each
state variable associated with the 6 body DOF in the nonlinear model and then
allowing the rotor to attain a new quasi-static trim condition.

2. 6 DOF identified model obtained from the nonlinear simulation by a
least square method, which uses only the 6 body DOF data and lumps an average
rotor contribution into the body DOF.

3. 9 DOF identified model obtained from the nonlinear simulation by
the least square method. This nonlinear model also includes a Kalman estimator
to resolve the flapping data into a tip path plane (for details see Reference L),
thus supplying the identification method with 3 rotor DOF data as well as
6 body DOF data.

L. 6 DOF reduced model obtained from the 9 DOF model described above,
by solving a quasi-static rotor in the 9 DOF identified model and algebraically
simplifying to 6 DOF.

Table I summerizes the models under investigation.
Procedure and Anelysis of Techniques and Models

Stability derivatives refer to the coefficients of the variasbles in the
Taylor series expansion representation of the aircraft equations of motion. The
expansion is linearized typically by discarding all higher order terms. There-
fore, the stability derivatives are equivalent to the partial derivatives of the
linearized equations of motion of the aircraft. When applied to fixed wing
aircraft, the system identification technique yields guantities that essentially
are derivatives. Only higher order effects are handled improperly. The
linearized helicopter problem is complicated by at least three nonlinear effects:

1. Higher-order terms of the rotor and body, which are omitted from
linesr models.

2. Additional rotor DOF, which are either lumped with the body in a
6 DOF linear model or approximated in a 9 DOF linear model.

3. Periodic coefficients, which represent an exact linesrization of the
equations of motion, are replaced typically by a constant coefficient linear
model.

The linearized helicopter equations of motion usually include the
quasi-static rotor assumption, so this assumption is reflected in the convention-
al helicopter stability derivatives.

Figure 1 illustrates the normalized forces and moments obtained in the
nonlinear General Helicopter model by perturbing one body parameter at a time
by a unit value while keeping all other body parameters constant. These two
examples show the variation with time of these terms as the rotor attains a new
quasi-static trim condition. By definition, the final values are the coef-
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ficients of the 6 DOF quasi-static linear model. (An averaging technique is
used to remove the periodic variation due to individual blade contributions
about the rotor azimuth.) These values differ from the definition of helicopter
stebility derivatives only by the inclusion of the effects of higher-order
terms. Since these effects are small, the coefficients composing the 6 DOF
quasi-static model are essentially equal to the derivatives.

The perturbation technique for obtaining derivatives of a linear model
can be applied only to analytic models. Identification techniques can be
applied to flight data as well as to analytic models. Superimposed on the
perturbation derivative of Figure 1 are the values of the corresponding
coefficients of the three other linear models under study. The location of the
symbols representing these values is arbitrary; the 9 DOF identified value is
placed near time equal to zero in order to emphasize the somewhat instantaneous
nature of this method, because it does not carry a quasi-static rotor assumption.
Since the 9 DOF representation of the helicopter is different from the 6 DOF
representation, the 9 DOF identified coefficients, as expected, bear little
resemblance to the stability derivatives. 1In general, the coefficients of the
6 DOF reduced model closely approximate most of the corresponding derivatives.
This technique encounters difficulty for eny responses that initially have
sharp spikes in the perturbation value (see Z T ). The 6 DOF identified
coefficients are found to be only & fair matcg %o the stability derivatives,
due to the apparent inclusion of helicopter nonlinearities into the curve fit
solution of the 6 DOF identification technique. This technique might yield
better velues of derivatives if shorter, more stable records of maneuvers
were used in the identification process. The coefficients of all the models
that depend on the identification method will include effects due to all three
helicopter nonlinearities described above, whether these models are derived
from anelytic models or flight data. Thus, coefficients of either the 6 DOF
reduced or the 6 DOF identified models at best should be considered only
approximations of the helicopter quasi-static stability derivatives as defined
above.,

Once the four linear models are obtained, roots are collected, using an
Eigenvalue progrem. The body roots all appear in Figure 2. Time history
responses of the 6 body accelerations are then obtained for 3 of the linear
models for the same longitudinal pulse control input. Figure 3 illustrates
the roll acceleration from the linear models and the response from the non-
linear model. With the exception of the 6 DOF identified method, the root locus
plots show good correlation of all techniques. The scatter seen in the high
frequency pair of roots is expected, because this pair 1s greetly affected by
the rotor contribution, which is represented differently by each technique.

It is found that both the long and short period modes due to linear effects,

can be captured by the system identification method, even if it is applied only
to short duration maneuvers. The 6 DOF identified model indicates, and attempts
to reproduce, the non-oscillatory instability described by the nonlinear model,
which is due to the increasing importance of nonlinearities as the helicopter
deviates fer from trim. (A pilot or feedback system normelly would keep the
helicopter within a steble flight regime.) Applying the 6 DOF identification
to shorter or more steble maneuvers should result in meking the 6 DOF identified
model roots more consistent with the roots of the other methods. This was found
to be true in e previous study (Reference 1).
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As seen by the dynamic response example of Figure 3, the 9 DOF identi-
fied model is the only one that faithfully reproduces the short term, high
frequency body accelerations due to transient rotor response. (The noisy data
seen in the nonlinear time history are the effects due to individual blade
dynemics.) The dynamic response obtained from the 6 DOF quasi-static model
does not indicate these initial responses, nor does it even give the correct
direction for the initial roll acceleration. This 6 DOF quasi-static model,
which consists of the conventional helicopter stability derivatives, is there-
fore not necessarily the most desirable linear model for studying system
dynamics.

IDENTIFICATION OF DERIVATIVES FROM FLIGHT DATA

Six degree-of-freedom derivatives are identified from CH-53A and CH-5L4B
flight test data. The identification method used is the extended Kalman filter
modified to accomodate simultaneous processing of different maneuvers. The
use of simultaneous maneuvers has two main advantages. First, significant
amounts of helicopter flight data are currently available that are only of
4 to 6 seconds duration. Sufficient data requirements and proper control input
excitation can be obtained only by using several of these segments. Secondly,
simultaneous, rather than sequentiasl, processing of the data segments eliminates
the need to start up each successive maneuver with the derivative and variance
computed at the end of the previous maneuver. An extensive study was conducted
(Reference 3) to investigate the best filtering method and a priori derivative
estimate to be used with the extended Kalman filter identification method. The
procedure found most accurate is summarized below.

l., Filter the data with an extended Kalman filter which is formulated
to filter the data and determine bias error and not identify derivatives.

2. Use these optimally filtered data with a least square estimator to
obtain an improved a priori derivative estimate and variance.

3. Modify the a priori derivative variance to reflect more accurately
the initisl uncertainty in the derivative estimate.

L. Use the least square derivative estimate and modified variance to
initialize the multi-maneuver extended Kalman filter derivative identification
algorithm.

A good derivative estimate is required to assure validity of the
linearizations in the Kalman identification algorithm. Additionally, smaller
amounts of date are needed for good derivative convergence when an accurate
estimate and variance are provided. The least square method using Kalman
filtered data provides an excellent estimate (Reference 2) for the derivatives;
however, the variance must be modified. Multiplication of this wvariance by a
factor of 100 or selecting a value based on engineering Judgment yields good
results.
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Application to CH-53A

The procedure discussed above is applied to four simultaneously
processed 6~second CH-53A maneuvers performed at 100 knots trim. Complete
results are given in Reference 3. Only highlights are discussed here.

Of the 60 identified derivatives, Figure L4 shows one typical convergence
plot. Two a priori derivative values are used to start the Kalman derivative
identification method: an arbitrary estimate and the value from the least square
method. Because it is more accuraste with smaller uncertainty, the least square
value shows fewer oscillations, particularly in the first 2 seconds of data.

The arbitrary estimate indicates that, if the initial guess is bad, & consider-
ably longer data length may be required before convergence occurs. Thus, for
short data records, it is important to make a good derivative estimate and to
select a variance large enough to reflect actual uncertainty, but not so large
that long dats records are required.

Simulation of the identified derivative model that used the least
square method shows a good match with test data used in the identification and
with test data not used in the identification (a more conclusive test of the
accuracy of the identified model).

The method is also applied to CH-53A flight data at 150-knot trim condi-
tions, using 4 simultaneous 5-second maneuvers. The lateral control inputs are
applied at the middle of the data record and again at the end. This does not
allow proper mode excitation or sufficient data lengths, as reflected in the
derivative convergence plot of Figure 5. Thus, derivative convergence should
be examined, since it contains information of the length of data required and
whether proper control inputs were applied.

Application to CH-5LB

The derivative identification method is applied to one l6-second data
record of the CH-5L4B at U5-knot trim condition. Since the open loop helicopter
is unstable in flight, this long data record is obtained with the pilot flying
the vehicle, thus providing the required stabilization. Derivatives are
identified for two runs using the same date record; both runs use the least
square derivative estimate. The derivative variance for the first run is
selected by engineering judgment, and the second run uses this variance divided
by four. Figure 6 shows the various identified models resimulated against the
flight data. Two conclusions are reached. First, the engineering judgment
selection of the derivative variance was too large. In fact, Figure 6 shows
that the least square model yields a superior match with the data. Reducing the
variance to an optimum value shows the large improvement made in the time
history match. Secondly, the identified linear model has unstable phugoid
characteristic roots and, when simulated against the test data, the match
diverges as shown in Figure 6. This is because the error variance equation
(error between test data and simulated identified model) is governed by a
differential equation that has unstable roots. Reference 3 discusses this
problem in detail. In Figure 6, the identified linear models are reinitialized
every U4 seconds because of this unstable error variance equation.
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Derivative convergence is shown in Figure 7 for selected derivatives.
Convergence is shown to be good, with the final derivative values quite close
to the a priori least square value. Using the final derivative values as
a priori estimates and rerunning the extended Kalman filter could further
improve the results.

Test Results vs. Theoretical Prediction

Six DOF identified coefficients represent the lumped effect of body
and rotor. Since these coefficients are obtained from transient input/output
data, the rotor is being excited continually. Thus, the lumped identified
coefficients represent the body plus average rotor contribution. The con-
ventional quasi-static helicopter derivarive assumes the rotor is in a steady
state condition (quasi-static rotor) and, thus, represents the body plus rotor
contribution after the tip path plane reaches steady state. For this reason,
6 DOF identified coefficients cannot be correlated one-to-one with conventional
quasi-static derivatives. Yet characteristic roots can provide a meaningful
comparison for rigid body modes. Figure 8 shows characteristic roots obtained
from the derivatives that were identified from the CH-53A flight data at 100
knots trim against the roots identified from a nonlinear simulation model.
Excellent agreement is shown for the phugoid and Dutch roll roots.

Figure 9 shows a similar comparison at the 150-knot trim condition. At
this speed, the unsugmented CH-53A is known to have slightly unstable Dutch roll
characteristic roots, as shown by roots identified from flight test. The non-
linear simulation model incorrectly predicts stable Dutch roll roots. Exam-
ination of the identified six DOF model reveals that the unstable Dutch roll
roots result from longitudinal-to-lateral coupling. While these discrepancies
are revealed in 6 DOF identification, isolation of the causes requires at
least a 9 DOF identification to separate rotor effects from the body.

FUTURE RESEARCH

The complexity and coupled behavior of helicopter motion provide strong
motivation for applying identification methods. Six DOF identification provides
quantitative information of rigid body stability. Discrepancies between actual
helicopter motion and motion predicted by nonlinear models suggest identification
as a means to isolate these discrepancies, but this requires identification of
at least 9 DOF models and perhaps more. This can be accomplished by first using
a least square method for initial estimate and then improving upon the deri-
vatives one row (or several rows) at a time with the extended Kalman filter. A
bias correction term might be added to each row that is not being updated to
account for modeling errors. This approach can provide a computationally
efficient means to identify large derivative arrays and, thus, permits complete
correlation of helicopter derivatives obtained from test and theory.

181



CONCLUDING REMARKS

Results of helicopter analytic modeling using system identification
have led to an improved linear modeling capability. The linear models investi-
gated all yield the same long-term characteristic roots, with the exception of
the 6 DOF identified model. This model yields the same roots only when the
date used in the identification are representstive of small perturbation re-
sponse. ©Small perturbation response is, thus, a necessary requirement when
identifying derivatives from flight test data. The 9 DOF identified model
proves to be the most accurate linear model that can be obtained from another
more complicated analytic model. The 9 DOF identified model duplicates the
short period, high frequency response of the helicopter resulting from rotor
transients.

Applications of the multi-maneuver extended Kalman filter for the
identification of six DOF models from flight data provide a quantitative means
of evaluating helicopter stability. Derivative convergence, control input, and
a priori derivative estimate requirements are established for successful
identification. Comparison of characteristic roots identified from CH-53A
flight data at 100 knots trim shows excellent agreement with theoretically
predicted roots. At 150 knots, the correlation is poor, indicating the need
for improvement in analytic modeling.

Six DOF identification from flight data provides a practical means to
correct discrepancies between theory and test. Nine DOF identification can
provide even greater correlation capability, since the body and rotor effects
can be isolated. A method is proposed to permit efficient identification of
systems with many degrees of freedom using the extended Kalman filter, meking
9 DOF identification computationally practical.
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IDENTIFICATION OF HIGH PERFORMANCE
AIRCRAFT STABILITY AND CONTROL COEFFICIENTS
AT HIGH ANGLES OF ATTACK

By W. E. Hall and D. E. Stepner

Systems Control, Inc.
Palo Alto, California

ABSTRACT

Alrcraft parameter identification is the process of extracting numerical
values for the aerodynamic stability and control coefficients, and other
subsidiary parameters (wind gust statistics, sensor errors, etc.) from a
set of flight test data (a time history of the flight control inputs and
the resulting aircraft response variables)., The key elements for achieving
this goal are: (1) proper choices of model structure and identifiable
parameters, (2) the identification algorithm, (3) the flight control input,
and (4) the instrumentation.

A program to integrate these elements into a high angle of attack aircraft
parameter identification technology is described. The basic tools of this
program discussed in this paper are: (1) a nonlinear aircraft simulation,

(2) a preprocessing algorithm for determining the structure and significant
parameters to be identified, and (3) the maximum likelihood identification
algorithm. The purpose of the simulation and the structure determination
algorithm is to isolate those problems in the parameter estimation which are
known to occur from over-parameterization, inadequate instrumentation, and
improper control inputs.

The six degree-of-freedom nonlinear aircraft simulation includes detailed
representations of the aircraft dynamics, aerodynamics, control system, and
instrumentation. This simulation, correlated with observed phenomena of
the high angle of attack regions, is used to generate data which is repre-
sentative of that obtained from flight test.

The output data from the simulation corresponding to a known control
input and known measurement statistics are used as the input to a model
structure determination algorithm. This algorithm is based on an optimal
subset regression technique. On the basis of an exhaustive assumed a priori
model, this model regression algorithm determines which of these assumed
model parameters significantly affect the aircraft response, and discards
the rest. Subsequent parameter identification via the maximum likelihood
method would assign values to this reduced parameter set.
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IDENTIFICATION OF NONLINEAR AERODYNAMIC STABILITY AND CONTROL
PARAMETERS AT HIGH ANGLES OF ATTACK*
By B.J. Eulrich and E.G. Rynaski

Calspan Corporation
Buffalo, New York

ABSTRACT

This paper presents the research program plan, the techniques used and
the progress to date of the identification of the aerodynamic characteristics
of the post-stall gyrations of the F-4 aircraft from records taken during the
Air Force acceptance tests of this high performance fighter. The major empha-
sis is placed on the practical considerations in using identification tech-
niques when analyzing experimental data, such as the determination of instru-
mentation errors and the development and verification of the aerodynamic rep-
resentation of the model.

The primary identification techniques used are a nonlinear, locally-
iterated Kalman filter/fixed-point smoother algorithm and a least squares
equation error method. Model form is initially determined from wind tunnel
data by representing the force and moment coefficients by Taylor's series ex-
pansion for selected ranges of angle-of-attack. This leads to a large number
of unknown parameters, which in many cases are not all identifiable from the
flight data. The least squares method is used, along with past experience
and physical reasoning, to provide the initial parameter and covariance esti-
mates for the iterated Kalman filter and also to provide an initial indication
as to parameter identifiability. However, prior to the extraction of the aero-
dynamic coefficients with the least squares method, state estimation and in-
strument error identification are performed with the Kalman filter. This in-
creases the accuracy of the least squares results and allows easy separation
of instrumentation errors from errors in the assumed form of the aerodynamic
model.

To reduce the computation burden, without unduly sacrificing accuracy
when employing the iterated Kalman filter, the six-degree-of-freedom equations
of motion of the airplane have been separated into two systems, one for ex-
tracting the longitudinal coefficients and the other for extracting the lateral-
directional coefficients. Preliminary results are presented in the form of
time history matches and extracted coefficients.

* This work is being supported under Contract No. F33615-72-C-1248,
Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force
Base, Chio.
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NONLINEAR PARAMETER IDENTIFICATION - BALLISTIC RANGE
EXPERIENCE APPLICABLE TO FLIGHT TESTING
By Gary Chapman and Donn Kirk

NASA Ames Research Center
Moffett Field, California

ABSTRACT

Over the past fifteen years, considerable experience in aerodynamic
parameter identification has been obtained at the Ames Research Center. In
particular, attention has been given to parameter identification involving
nonlinear aerodynamic models and large amplitude motion. The purpose of
this paper is to discuss the results of recent efforts that can be applied to
aircraft flight testing.

The parameter identification scheme being used is a differential correction
least squares procedure (Gauss-Newton method). The position, orientation, and
derivatives of these quantities with respect to the parameters of interest
(i.e., sensitivity coefficients) are determined by digital integration of the
equations of motion and the parametric differential equations (ref. 1). The
application of this technique to three vastly different sets of data is used
to illustrate the versatility of the method and to indicate some of the
problems that still remain. The first set of data are for the X-15 research
aircraft. These data were originally obtained over ten years ago but could
not be analyzed with the techniques in use at that time. The data to be
analyzed are from a slowly rolling flight at small angles of attack. For
these conditions, a conventional linear aerodynamic model is applicable
and the fits to the a - g motion obtained with the linear model were very
good (see fig. 1). The aerodynamic parameters determined (not shown) by
this technique were found to agree well with flight and wind tunnel values.

The second example deals with motions of an axisymmetric vehicle trimmed
near 90° angle of attack. This type of motion (see figs. 2a and b) is very
similar to an aircraft in a flat spin with some residual oscillations in
angle of attack. The residual oscillations here were sufficiently large to
require using a nonlinear force and moment system. Both a conventional force
and moment representation and that of Tobak, Schiff, Peterson and Levy
(refs. 2 and 3) (TSPL) were utilized. The equations of motion were more
easily handled in an Eulerian system (resultant angle and its orientation)
than in a conventional modified Eulerian system (yaw, pitch and roll). Past
experience in nonlinear parameter identification (ref. 4) has shown that the
angular motion waveform is not sensitive to nonlinearities (see fig. 3); °
therefore, simultaneous reduction of several sets of data (four, in this case)
with different amplitudes was required to define the nonlinearities. Long
data samples, if available, will often fulfill the same requirement. The
static forces and moments determined from these free flight data obtained at
M ~ 14 are in relatively good agreement with some low Mach number (M = 3.2)
wind tunnel data (see figs. 4 a, b, and c¢). It was not possible with these
data to ascertain whether there is an advantage to the TSPL force and moment
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representation because the pitch and spin damping (where the major difference
between modeling systems appear) are both so small as to make good identifica-
tion difficult.

The last case to be presented is again for an axisymmetric body trimmed
near zero degrees with an amplitude near 20 degrees. The test was a free
flight wind tunnel test (ref. 5). This case represents an as yet unsolved
modeling problem and illustrates some of the things that can be tried and
the implications involved. The motion was first analyzed with the conven-
tional linear static moment representation and constant damping. The fit that
was obtained (not shown) resulted in a standard deviation of 1.1°. A cubic
term was then added to the static moment; this addition resulted in a signifi-
cant improvement in the standard deviation of fit (0.73°). This fit, shown
in figure 5, is still not nearly as good as the scatter in the smooth data
suggests it should be. In addition, the differences between the predicted
curve (fit) and the smoothed data were not distributed uniformly about the
predicted curve. In an attempt to improve the fit, additional nonlinear
static moment terms were tried with no significant improvement. Finally, the
nonlinear spin damping (Nj§) of the TSPL moment representation was tried, but
no improvement was noted. At the present time it is not understood why the
modeling attempts do not produce better fits to the data; however, the dis-
crepancy may be associated with nonconformities in the wind tunnel flow.

An important question, for which as yet there is no answer, is whether
the addition of the cubic term as described above makes any sense when the
residuals are strongly correlated, even though it did produce a significant
reduction in the standard deviation. Attempts to improve the fit and under-
stand the modeling problem are continuing.

In summary, the parameter identification technique in use on ballistic
range data has been successful in handling some nonlinearities, but modeling
remains a problem in many cases, as our one example showed. The differences
between parameter identification in ballistic ranges and in aircraft flight
testing are more of degree than of type, with the possible exception of
turbulence; however, much flight testing is not strongly influenced by tur-
bulence and in this respect, the ballistic range experience can be of use,
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Figure 2.- The motion of an axisymmetric body near a 90° trim point.
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Application of the Maximum Likelihood
Method to the ldentification of Aircraft Parameters

at High Angles-of-Attack
By Dr. W. R. Wells and J. B. Callahan, Capt., USAF

Air Force Flight Dynamics Laboratory
Wright-Patterson Air Force Base, Ohio

ABSTRACT

An application of the maximum likelihood algorithm to the high angle-of-
attack stability derivative estimation problem as applied to a fighter type
aircraft is described. Used in the study are the full six degree of freedom
non-linear equations of motion with the inclusion of selected terms from a
Taylor's series third-order expansion of the aerodynamic force and moment
coefficients. This procedure introduces into the problem higher order cross-
coupling of the angles-of-attack and sideslip effects through coefficients
whose values are to be determined. The algorithm uses as start-up values the
linear coefficients determined by the program when the higher order coefficients
are dropped, leaving the same coefficients as Groves, et,al. in a NASA-LRC study.
The higher order derivatives are then considered in selected groups until all
coefficients are found. Preliminary results indicate numerical problems
associated with the inversion of ill-conditioned matrices. A convergent
solution is highly dependent upon the ''goodness'' of the start-up values. Since
it is necessary that the coefficient considered must make a change in the air-
craft response, further difficulties arise from the uncertainty that the param-
eter in question is, in fact, reflected in the flight data.
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IDENTIFICATION OF AIRCRAFT STABILITY AND CONTROL PARAMETERS
USING MULTILEVEL, HIERARCHICAL ESTIMATION*
By C. M. Fry and A. P. Sage

Information and Control Sciences Center
SMU Institute of Technology
Dallas, Texas 75222

SUMMARY

Previous attempts to identify aircraft stability and control derivatives
from flight test data, using three-degrees-of-freedom (3-DOF) longitudinal or
lateral-directional perturbation-equations-of-motion models, suffer from the
disadvantage that the coupling between the longitudinal and lateral-directional
dynamics has been ignored. 1In this paper the identification of aircraft
stability parameters is accomplished using a more accurate 6-DOF model which
includes this coupling. Hierarchical system identification theory 1s used to
reduce the computational effort involved. The 6-DOF system of equations is
decomposed into two 3-DOF subsystems, one for the longitudinal dynamics and
the other for the lateral-directional dynamics., The two subsystem parameter
identification processes are then coordinated in such a way that the overall
system parameter identification problem is solved.

1. INTRODUCTION

The desirability of obtaining accurate estimates of aircraft stability
and control derivatives from flight test data has been recognized for some
time, The identification of aircraft derivatives from flight test data is a
problem in parameter identification., Parameter identification problems have
been extensively investigated. References [1-2] are survey papers and
references [4] and [5] are books on system identification, There has also been
a good deal of effort devoted to the application of system identification
techniques to the problem of aircraft parameter identification, Mehra [6,7]
has made perhaps the most successful contribution thus far to the solution of
this problem. Reference [7] contains a summary of various methods of para-
meter identification and also contains numerous references to other contribu-
tions to the aircraft parameter identification problem,

Most previous attempts to identify aircraft stability and control
derivatives from flight test data have been hindered by the fact that the air-
frame was modeled using three-degrees-of-freedom (3-DOF) linear perturbation
equations of motion. The longitudinal and lateral-directional 3-DOF models
ignore the effects of dynamic coupling between the longitudinal and lateral-
directional motion, This dynamic coupling is often significant in flight test
manuevers., Any attempt to identify parameters in a 3-DOF model using flight
test data in which the coupling is significant will lead to error in the
parameter estimates. This is due to the fact that the identification process
essentially adjusts the parameters of the model so that the model time
histories match, as well as possible, the aircraft flight test time histories.
Any error due to use of an overly simplified model will show up as error in
the parameter estimates.

This research was supported by the National Science Foundation under Grant
GK 33348.

199



The present work is an attempt to at least partially avoid errors in the
parameter estimates caused by inaccurate modeling. Six-DOF nonlinear perturba-
tion equations of motion, which include dynamic coupling between the longi-
tudinal and lateral-directional modes, are used as the airframe model,
Unfortunately, the fact that the 6~DOF model is nonlinear and is higher-di~
mensional than a 3-DOF model makes the solution of the parameter identification
problem much more demanding computationally., This difficulty can be overcome
to a great extent by using hierarchical estimation techniques to reduce the
computational effort involved, In this paper the 6-DOF system of equations is
decomposed into two 3-DOF subsystems, one for the longitudinal dynamics and one
for the lateral-directional dynamics. The two subsystem parameter identifica-
tion processes are then coordinated in such a way that the overall system
parameter identification problem is solved.

2, SYSTEM IDENTIFICATION USING HIERARCHICAL SYSTEM THEORY

The basic idea of hierarchical system theory is to decompose a large
unwieldy system into several smaller subsystems which are more easily analyzed.
The analyses of the subsystems are then coordinated in such a way that the
overall system problem is solved. Smith and Sage [8] have presented a very
readable introduction to hierarchical system theory as applied to the dynamic
optimization problem. A more general discussion of the dynamic optimization
problem is given by Pearson [9] while a very general development of hierarchi-
cal system theory has been accomplished by Mesarovic, Macko and Takahara [10].
Smith and Sage [11] have applied hierarchical system theory to the problem of
system identification. A summary of the development of their identification
algorithms will be presented to serve as an introduction to hierarchical
system identification.

Continuous—Time MAP Estimation

The parameter identification problem can be effectively approached through
the use of state estimation techniques. The maximum-a-posteriori (MAP) method
of state estimation will now be presented to serve as a tool for the identifi-
cation of system parameters. Consider the nth order nonlinear continuous-time
system given by

x(t) = F[x(t),t] + w(t) (2.1)
and
z(t) = h[x(t),t] + v(t) (2.2)

with E{x(to)} = l,, and var{x(t. )} = on, where f denotes the original system
function and where x(to) is assumed to be gaussian and uncorrelated with the
plant and measurement noise processes; thus,

cov{x(to),w(t)} =0 = cov{x(to),v(t)}

for all t > t, where we define cov{a,b} a E{[a—ua][b—ub]T}.
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Equation (2.1) represents the plant state variable dynamics and equation (2.2)
represents the state observations where

x(t) is the n-dimensional state vector,

?[x(t),t] is the n-dimensional vector-valued nonlinear function
describing the plant structure and includes any known inputs,

w(t) is the n-dimensional plant noise vector,
z(t) is the r-dimensional observation vector,

h[x(t),t] is the r-dimensional vector-valued nonlinear function
describing the relation between the system states and observa-
tions, and

v(t) is the r-dimensional measurement noise vector,

It is assumed that the plant and measurement noises are uncorrelated, zero-mean,
white gaussian processes with covariances

cov{w(t) ,w(t)} = Tw(t)GD(t-T)

cov{v(t),v(1)} Wv(t)dD(t—T)

and
cov{w(t),v(T)} = 0

The (nxn) matrix Y,(t) and the (rxr) matrix ¥, (t) are assumed to be positive
definite symmetric covariance matrices,

Now let X(t_.) and Z(tf) be defined by the sets

X(tg) = {x(t) @ ) < £ <t}

ne>

Z(tp) = {z(t) r 5‘tf}

d -
Then p[X(tf)|Z(tf)] represe..” <.ie conditional probability density of X(tf)
given the observations Z(tg). The maximum-a-posteriori (MAP) estimate of x(t)
over the interval [ty < t < tg] is that estimate obtained by maximizing the
density p[X(tf)IZ(tf)] with respect to X(tf). It is shown in references [4] and
[12] that maximizing p[X(tf)|Z(tf)] with respect to X(tf) is equivalent to
minimizing with respect to w(t) the functional

tf
= _ 1 , 2 1 2
T =3 ||x(co)—ux(::o)llv_l +3 ft {”z(t)—h[x(t),t]”w_l

X0 0 v

(t)

+ [lw(o)]] ?
‘y‘;l(t) dt (2.3)

where tg¢ is fixed, subject to the dynamic equality constraint given by equation
2.0 _
x(t) = flx(t),t] + w(t)

Thus the MAP estimate of the system state X(tf) given the observations Z(tf)
can be obtained by solving the above dynamic optimization problem,
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Thus the MAP estimate of the system state X(tg) given the observations Z(tg)
can be obtained by solving the above dynamic optimization problem,

The optimization problem defined by equations (2.1) and (2.3) can be
solved by applying the Pontryagin Maximum Principle [13]. Forming the
Hamiltonian, we have

= 1 2 1 2
H[x(t) ,w(t) ,A(t),t] = 5||z(t)-h[x(t),t]]|*_ + 2 [Jwe)]| 7
2 1 2 1
¥ T (t) ¥ " (t)
v w
+ AT () (FIx(e) ,t] + w(e)} (2.4)

where A(t) 1is an n~dimensional vector Lagrange multiplier, The necessary
conditions for a minimum of J are that

%% -0 = W;l(t)ﬁ(t) + ACt)
so that

(e) = ~¥ (DAL) (2.5)
and _

%% = &(t) = £[R(t),t] + W(t) (2.6)

-%=Aa>=ﬂﬂ%ﬂil%%wuu»MﬂQJn—ﬁﬂ%ﬁﬁlMo

9R(t) R (t) 2.7

with boundary conditions

M) = -VlR(e)-u ] (2.8)
and

Mty =0 (2.9)

where §(t) and G(t) represent optimum values. Equations (2,5) through (2.9)
represent a two-point boundary-value problem (TPBVP) whose solution will yield
the fixed-interval smoothing estimate of x(t), denoted ﬁ(tltf), which is the
estimate of x(t), te[to,t ], based upon the data Z(tf) which represents all of
the observations z(t), tefto,tf]. Thus, strictly speaking, the solution of the
TPBVP must be performed off-line after all of the observation data are available,
However, 1f the TPBVP is solved by means of invariant imbedding, an algorithm

is obtained which yields the filter estimate of x(t), denoted ﬁ(tlt), which is
based only on the observation set {z(1) & tn < T<t }. This 1is a desirable
solution since it allows sequential process ng of the observation data,

Parameter Identification Using State Estimation

If there are unknown parameters in the plant or observation models, state
estimation can be used to identify them. Suppose the system plant and observa-
tion equations are written as

y = F'ly(t),p(t),t] + w'(t) (2.10)

z(t) = h'[y(t),p(t),t] + v(t) (2.11)
where y(t) is the state vector and p(t) is the vector of unknown parameters,

and
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Let the unknown parameter vector be modeled by
p(t) = Ap(t) + w"(t) (2.12)

where w'"(t) 1is a zero-mean gaussian white noise vector. If p(t) is a constant
vector, it is often adequate to model it by letting the A matrix in (2.12) be
the null matrix so that

p(t) = w'(t) (2.13)

The unknown parameter vector p(t) can be adjoined to the state vector y(t) to
form an augmented state vector x(t) defined by

y(t)
p(t)

Now equations (2.10)-(2.12) can be combined and rewritten in the form of
equations (2,1) and (2,2) by defining

— A -E' [y(t) ’P(t):t] A w' (t)
£lx(t),t] = 3 w(e) =
Ap(t) w'(t)

x(t) =

Thus, the MAP estimate of the state of the new system will yield estimates of
both the states and unknown parameters of the original system. The noise term
w"(t) in the parameter model is needed to prevent the phenomena of data
saturation and divergence of the estimation algorithm, Reference [4] contains
considerable discussion of this approach to system identification.

Hierarchical System Identification

It is an unfortunate consequence of the state augmentation approach to
parameter identification that the dimension of the state vector is increased.
This fact can often make the direct solution of MAP estimation TPBVP computa-
tionally prohibitive. Hierarchical system theory can be applied to the solution
of the MAP minimization problem to reduce the computational effort, This is
accomplished by decomposing the original minimization problem into several more
easily solved subproblems. These subproblems are coordinated in such a way that
their composite solution results in the solution of the overall problem,

Assume that the.original system described by equations (2.1) and (2.2) can be
be decomposed into N subsystems where the ith subsystem state vector has
dimension n; and the ith subsystem observation vector has dimension ry so that

) )
n, =n and r, =°
i=1 T i=1 1

where the state equation for the ith subsystem is given by
xi(t) = fi[xi(t),ni(t),t] + wi(t) (2.14)
and where the ith subsystem observation is given by

zi(t) = hi[xi(t),t] + Vi(t)
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The vector T;(t) represents the coupling into the ith subsystem from all of the
other subsystems. Thus, m;(t) is a function only of states other than those in
xi(t) so that

m () = giIxj(t)] » 141 (2.15)

The equations (2,15) are called interconnection constraints. Now assume that
¥, (t) and ¥, (t) are block diagonal matrices so that
b4 0 y 0
LAY v
Y = Y . , Y = Y .
w w,°,
0 b4 0 Y
WN VN
where Y, 1is an (nixni) dimensional matrix and in is an (rixri) dimensional
matrix. "This assumption implies that there is no plant noise correlation and
no measurement noise correlation among the subsystems, If such correlation
does exist, ¥, and ¥, can be made block diagonal by applying standard matrix
techniques given in reference [11]. Thus, with ¥, and Yy block diagonal, the
performance functional J given by equation (2.3) can be decomposed into the

additive form

— N —
I= 13, (2.16)
i=1
where tf
T o= 4 2 1 2 2
=% "xi(to)-llxi “v-l +5 f {Ilzi-hi[xi,tjnw_l + ”will\y_l}dt (2.17)
° X t V. w
io 0 i i

Thus, the overall minimization problem can be solved by solving the N minimiza-
tion problems defined by minimizing J4 with respect to wi(t) subject to the
constraints given by equations (2.14) and (2.15).

The overall cost functional may be rewritten as
N (L tr T
I= ) 43+ By (E) [ (t)-g, (x,)]dt (2.18)
im] to

where equations (2,15) have been adjoined to assess a penalty for failing to
satisfy the interconnection constraints, We will assume that the system
decomposition can be carried out so that

N

g,(x,) = g..(x,)
13 jzi 1174

By algebraic manipulation it can be shown that

L E e ) b g
B 8,4 (x,) B 8,y (x,) (2.19)
=1 L oggg MY g2y g I
Then the overall cost J may be written as

g -ty g T (2.20)

J = J, + f g.m, = B.g,,(x,) de -
R Ee! X 11 -G Rt R
0
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or N

I= 3 3, (2.21)
i=1
where t
£
1 2 1 2 1 2
1 = F et 12, + [ e ol + 3l ol?
io V ¢ WV W&
*io0 0 i i
+ BT 3 Blg. (x,) bdt (2.22)
1M < jgi 1851y .

Thus, the minimization problem associated with the ith subsystem is to minimize
equation (2,22) with respect to wi(t) subject to equation (2.14) given by

;i(t) = £ [x,,m ,t] + w () (2.23)

Rather than write necessary conditions for 8 (t) and mi(t), we will use the
Prediction Principle of Mesarovic, et al. [16]. Using the Prediction Principl-~,
a supremal controller or supremal unit predicts values for the variables m(t)
and B(t) and supplies these values to the subsystem minimization processes.
The minimjization problem associated with the ith subsystem will be hereafter
referred to as the ith infimal unit. The infimal units then solve their
problems using the values of T(t) and B(t) supplied by the supremal. The
supremal unit then uses the results of the infimal solutions to predict new
values for m(t) and B(t). This process is repeated until m(t) and B(t) are
correctly predicted so that the interconnection constraints are satisfied.
Because the function of the supremal unit is to coordinate the infimal units,
it is sometimes referred to as the "coordinator" and T(t) and B(t) are called
"coordination variables.," Since m(t) is associated with the subsystem
interconnections, it is called the "model coordination variable'. Since B(t)
is more closely associated with the infimal performance functions, it is
referred to as the "goal coordination variable'.

The infimal minimization problems can be solved using the Maximum Principle.
The ith Hamiltonian may be written as

1 2 1 2 T
Hi --Ellzi-hi(xi.tﬂlw_l + i'”wi"w_l + Xi[fi(xi’ni’t)+wi]

vy ¥y
T N T
ipd

Necessary conditions for a minimum of J1 are

oH

-—i--o-w;161+>\i

aﬁi i
so that

Qi = -Ywiki (2,25)
and
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12 .
'5'5\-; = xi fi(ﬁi,ﬂ'i,t) + Qi (2.26)
M, . Bh (R,t) _ BEL (R, ,t)
-—2La3, - V- 2 -h (R,,0)]- A
% 0% vy 171 %
i i i
N
*%[z%%ﬁ) (2.27)
3xi j#i
with
-1
A () = =V 7[R (e )=-u. ] (2.28)
i*70 xio 1iY70 xio
and
A (Eg) =0 (2.29)

The TPBVP defined by equations (2.25)-(2.29) can be solved using the method of
continuous invariant imbedding [4,11-13] to obtain the state estimation algorithm
given in Table 1, It is the nature of the invariant imbedding solution that

the filter estimate Qi(tlt) is obtained., Thus the algorithm of Table 1 is
processed sequentially,

Coordination Procedures

Thus far in the present development, the exact procedure the supremal
unit uses to predict new values of the coordination wvariables has not been
discussed. There are actually many ways to accomplish coordination of the
infimal units, The particular method used depends upon the nature of both the
problem treated and the desired solution. The one overriding requirement that
the coordination procedure must meet is that it must, of course, result in a
convergent algorithm for the overall problem solution. One coordination
procedure using the Prediction Principle that has shown good convergence
properties is the equality method of Guinzy and Sage [14]. This procedure is
developed by comparing the TPBVP for the coordinated system with the TPBVP
for the uncoordinated system. For the uncoordinated system, the Hamiltonian
is, from equations (2.14)-(2.17)

H = jl{%nz L0l 1t ) Hwi” Ry L (g 8, Cxp) t)-i-'w]}

v
i (2.30)
If we compare the canonical equations for the coordinated and uncoordinated
ith infimal unit, it becomes evident that for the TPBVP's to be equivalent,
it is required that

my(e) = g [R,(0)] (2.31)
and
! o i
[s (&, )]8 £ I8 8. (%), t]l (2.32)

for 1-1,2,...,N. Unfortunately, this coordination procedure, as stated above,
is nonsequential. The supremal unit must supply the infimal units with
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coordination variables B(t) and T(t) for all te[ty,tg]l. Then the infimal units
nust solve their problems based on these predictions for all te[to,tf]. Only
then can the supremal predict new values of B(t) and mw(t). Thus, we see that
even though the infimal estimation algorithm is sequential, the overall system
algorithm is iterative,

One method for obtaining an overall-sequential algorithm is to use the
predictor-corrector coordination method of Smith and Sage [15]. The procedure
developed there is to use approximations to the derivatives of the coordination
variables given by

By = 2 1B(0)-8(t-00)] (2.33)
and

T(e) = 5= [M(E)-T(t-A0)] (2.34)
to predict new values for th? coordination variables according to

B(t+ht) = B(t) + B(t)at (2.35)
and

To(tHAE) = T(t) + T(E)AL (2.36)

where the subscript p denotes predicted value. The supremal then corrects these
predicted values using the relations

3H(t)

B(t) = Bp(t) + KB PIO) (2.37)
and
m(e) = 5 {n (O)+glx(0)]) (2.38)

where B(t) 1s corrected to minimize the Hamiltonian using a one-step gradient
technique while m(t) is corrected using an averaging process,

3. AIRCRAFT PARAMETER IDENTIFICATION

Equations of Motion of the Aircraft

The 6~DOF airframe perturbation equations of motion used for this study
were developed following reference [16]. The development of these equations
will not be given, but the assumptions used in the derivation will now be
listed:

1, The airframe is assumed to be a rigid body.

2, The earth 1s assumed to be fixed in space and the atmosphere is

assumed to be fixed with respect to the earth,

3, The mass of the airplane 1s assumed constant over the duration of any
manuever,

4, The xz plane is assumed to be a plane of symmetry.

5. Initially the airplane is assumed to be in steady flight with wings
level and with all components of velocity, including angular velocity,
zero except for horizontal velocity Uy and vertical velocity Wj.

6. The air flow is assumed to be quasi-steady; that is, as the airplane
changes its orientation with respect to its flight path, the air flow
is assumed to change instantaneously to a steady-state flow pattern.,

207



7. The angular deflections are assumed small enough to allow setting the
g8ines of the angles equal to the angles and the cosines equal to one.
Assume products of the angular deflections to be small enough to
neglect.

The Eulerian axis system used will be the principal axis system since for this
axis system the moment of inertia I,, is zero, and there is a resulting
simplification of the equations. Stability derivatives identified with respect
to the principal axis system can be transformed to correspond to a different
axis system by a coordinate transformation. The model of the airframe to be
used here is given by:

Longitudinal Equations:

u = —qu—wq+vr—q9 cos 60+qu+qu+XwWX6e6e

w = -pv+U,q+qu-gd sin 60+Zuu+qu+wa+Zée6e (3.1)
-1

. zzZ XX .

q= ___7;;:- pr+Muu+qu+Mww+Mww+M686e

Lateral-Directional Equations:

v =-U r—ru+W0p+Wp+gw sin 90+q¢ cos 6 +va+Yrr+Ypp+Y6 6a+Y6 Gr

0 0

I -1 a r
r o= o L XX
r [ T Jpq+va+Nrr+Npp+N6 (Sa-!-N6 . (3.2)

zz a r

I -I
ho= -] 22 YY
p [ I ]qr+LvV+er+Lpp+LGa6a+L6r6r

where the stability derivatives are dimensional derivatives defined by
expressions of the form, reference [16],

_ 13X 1 93
u - m 3 and T
XX

Note that terms involving products containing angular velocity perturbations
have been retained., It is through these terms that the dynamic coupling
between the longitudinal and lateral-directional modes is represented. The
magnitude of these terms can easily become significant even for small angular
deflections since the angular rates of change may become sizeable even for
small angular deflections,

Identification Procedures

The method of hierarchical system parameter identification will be applied
to the identification of unknown aircraft stability and control derivatives.
The airframe equations of motion, equations (3.1) and (3.2), and the state
observations can readily be put in the form of equations (2.1) and (2.2). Any
unknown stability derivatives can be adjoined to the state vector as additional
states, but the dimension of the resulting state vector will be high. The
airframe equations of motion rather naturally decompose into a longitudinal
subsystem and a lateral-directional subsystem since the coupling between the
modes 1s light. A schematic of the aircraft hierarchical parameter identifica-
tion process is shown in Fig. 1.
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It will be assumed that atmospheric turbulence can be adequately modeled
by first-order dynamical models driven by white gaussian noise. If the
turbulence is zero-mean and the noise covariance terms are known, or if there
is no turbulence, the results of Section 2 can be used directly to identify the
unknown system parameters. However, if turbulence is present, it is unlikely
that the covariance of the turbulence will be known exactly, Smith and Sage
[15] have developed an adaptive estimation algorithm for hierarchical systems
which can be used when the plant and observation noise moments are unknown.

The procedure used there is to alter the sequential algorithm of Table 1 so

as to allow their use in situations where the noises are assumed to be white
and gaussian but with unknown means and variances. This is done by incorporat-
ing the adaptive estimation algorithms of Sage and Husa [17] and Sage and
Wakefield [18] into the hierarchical identification algorithms. Algorithms
from reference [17] are used to identify unknown measurement noise moments

and algorithms from reference [18] are used to treat the case of unknown plant
noise covariances, The reader is referred to the referenced papers and to

the companion paper for further details.

It will be assumed that only measurements of the system states are
available in the linear form

z(t) = Hx(t) + v(t) (3.3)

Thus, either the linear and angular accelerations are either not available or
available but not used. If measurements of these accelerations were to be
used, then these observations could be adjoined to the state observation
vector, Thus, suppose we have the observations:

Observation of x : z, = Hlx(t) + vl(t)

Observation of x : z, = Hzx(t) + vz(t) = Héf[x(t),t] + sz(t) + Vz(t)

These can be combined to form
z_ (t) H.x(t) v, (t)
2(t) = 1 - ¥* + 1
zz(t) Hzf[x(t) ,t] __sz(t)+v2(t)

Now, the observation equation is a nonlinear function of the system state and
the measurement noise is now correlated with the plant noise. The case of
correlated plant and measurement noise can be treated by writing equation (2.2)
as

z(t) - h{x(t),t] - v(t) =0
Equation (2.1) can be written, by adding '"nothing" to it, as

x(t) = F[x(t),t]+w(t)+3{z(t)-h[x(t),t]-v(t)} (3.4)
or

x(t) = 8[x(t),t] + w(t) (3.5)
where, since z(t) is a known function of t,

6[x(t),t] = £[x(t),t] - Eh[x(t),t] + Ez(t) (3.6)

w(t) = w(t) - Zv(t) (3.7)
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Now, it is desired to adjust Z such that the plant noise w(t) and the
measurement noise v(t) are uncorrelated. Now, postmultiplication of
equation (3.7) by v!'(1) gives

w(t)vT(r) = W(t)VT(T) - Ev(t)vT(T)

Taking the expected value of both sides of this equation, we have that

-V =2V =0
wv wv v
where we have enforced the requirement that V = 0, Thus, for w(t) and
v(t) to be uncorrelated, E must be given by
z=v vyl
wv'v

Thus, for the case of plant and measurement noise correlation, the plant
equation (2.1) can be replaced by equation (3.5); and the results obtained
previously may be used directly with appropriate substitutions.

It 1s of interest to point out that if the atmospheric turbulence inputs
were somehow observed during the flight test manuevers, then the plant noise
moments would not need to be identified by adaptive estimation methods. This
would be a problem in system identification with a noise~corrupted plant
noise observation

zz(t) = sz(t) + v2(t)
in addition to the state observation
zl(t) = Hlx(t) + vl(t)
The observation vectors can be combined to form
zl(t) H1 vl(t)
z(t) = = x(t) +
zz(t) 0 sz(t)+v2(t)

Thus, once again the noises are correlated, and this situation can be treated
just as described before. This problem is given more detailed treatment in

Sage and Wakefield [19].
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Solution Procedure

The method of parameter identification using hierarchical estimation has
been applied to the problem of the identification of unknown aircraft stability
derivatives. The development of the solution procedure used is now presented.
The system model used in the identification is given by equations (3.1) and
(3.2). It is assumed here that the plant and measurement noise covariance
matrices Y, and WV are known and constant. This allows the use of the estima-
tion algorithms of Table 1. Suggestions for dealing with the case of unknown
noise moments will be given later in the paper.

It is the nature of the 6-DOF airframe perturbation equations of motion
that the longitudinal equations and the lateral-directional equations are rather
weakly coupled. This fact can be used to advantage by employing the method of
Section 2 to hierarchically structure the identification problem. The airframe

equations of motion can be rewritten in state variable form by defining state
variables yi(t), i=1,...,n as

= =Y
yp = v Vg ug Y9 ]
v, = Y Ve = wg Y10 : P
¥4 = 4 y; =V Y11~ ¢
}74 = e y8 =T y12 = Vg

where u_, w,, and v, are the x, y, and z components of atmospheric turbulence,
respectively. With the state variables so defined, equations (3.1) and (3.2)
become

Y1 = WYy = Y¥3 ¥ yg ~@ cos Oy, + Xy, + Xy, + Xyyt Xae5e
T V¥ t VgV t XYt XY
2 - Y910 + on3 + Y153 - (g sin eobz + zuyl + Zwy2 + qu3 + 2686e

Y1012 T Y395 t 295 T 25,
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™ ZZ XX
Y3 = Iyy Y8¥10 * Muyl + Mwy2 + qu3 + MGeGe + Muy5 + Mwy6
Y47 3
Y5 = -7 Y5t ¥
ug
. 1
V¢ =T Y6t ¥
wg

y, = -on8 - ¥,¥g + walO + Y510 +(g sin qué + (g cos eohﬁl + Yvy7

*Y gt Y Y10t Vs 8a Y5 O, Ys¥g tYeYip t YY1

a r
. I -1
Yg T T T Y910 Y N7 + Nyg ¥ Ny * Nsaaa + NGrGr TNV,
Vg = Vg
. IZZ—I
Yi0 = ~ T yg¥g t Ly + Lyg * Lot Lg 8+ Lg S+ Lyyyy
XX a r
Y11 7 Y10
’ =--.].:—- + w
Y12 T Y12 7 Y12
vg

with the observation set assumed to be given by

2=V vyt 25 = Y7 Y15 F Vs
zy = y2 + y6 + v2 z6 = y8 + v6
z3 = y3 + v3 z7 = y9 + v7
2, =Y, F v, 2g = Y10 T Vg
29 = Y13 * Vg

It has been assumed in the equations above that M* = 0 since this results in
considerable simplification of the equations, and"1is usually a good assumption
anyway. The observation noises vy, 1 = 1,...,9 are assumed to be zero-mean
and uncorrelated with each other. The three components of atmospheric
turbulence, u,, w,, and v,, are also assumed to be zero-mean and mutually
uncorrelated and uncorrelated with the observation noises.
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Any unknown stability derivatives may be adjoined as additional states.
For the problem discussed here it is assumed that all of the system parameters
are known except for the parameter representing the change in pitching moment
due to pitch rate, . This assumption was made based on two considerations.
First, the effort involved in deriving the estimation algorithms was consider-
able even for the case of one unknown parameter; and second, the procedure for
the case of many unknown parameters is identical to the procedure for the case
of one unknown parameter. Thus, since the primary purpose here is to exemplify
the method, the simpler problem is solved.

The first step in the derivation of the hierarchical estimation algorithms
is to decompose the system into two subsystems by replacing the terms coupling
the longitudinal and lateral-directional equations by model coordination
variables T1(t) and mp(t). Thus, with Mq adjoined as an additional state,
define the subsystem state vectors as

Sl IR
X ’ y q 252 78
X, = xi,z £ yz =19 and x, = 72,3 2 79 = !
x1’5 Vs g ::2’4 zlo :
x1’6 M3 wg x2’5 yll v
J_X1:7_L Ly, L | %26 | | V12| | Vg ]
and let the coordination vectors be given by
—"1,17 _31,1("2)— —xz,ﬂ
o M2 | _ 81,2 (%) A | *2,2
Lo ™M, 81,3(%p) X).4
| M1,4 J_gl,z,("z)J | *2,6 |
and
—“2,17 h—82,1("1)7 —xl,ﬂ
2,2 8y 2(x1) A *1,2
Ty = T3 | =] 82,30 | | *,5
Ta,4 8,4 (%) %1,6
LTy 5. J-82,5("1)— LX1,3«

We will follow the convention that the subscript in front of the comma in the
above expressions refers to the subsystem while the subscript following the
comma refers to the component of the vector. This has proven to be a very
convenient notation for high~dimensional problems. With the subsystem state
vectors and coordination vectors thus defined, the subsystem equations can now
be written.
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Subsystem 1:

1,1

e

1,2

Moo

1,3

with

Subsystem 2:

214

=-Ux, , - ﬂ2,1x2,2 + Wox2,4 + 7T2’2x2,4 +(g sin eo)x

0%2,2

+(g cos GO)X

+ Y x + Y

v 2,6

2,5

TWoXy 37 X 0% ,3 % T 1Mo

- U
M,1"1,3 1 To¥,3
+ Z x
2z Txx
= T T 2M,3 Y,
yy
+wal,6+M Ge
- *1,3
I
T T s Vs
g
o
BRI WA IR
g
V1,7
B TSRS T S
Tx2 T ¥tV
=X .37V,
T XtV

2,1

6a+Y<S Gr

a r

+ +
va er2 ,2

-(g cos 90)"1 4t XX

- +
XX 7 *L,3% 1,6 T T2 e Y R s

+ xl,lxl,B - (g sin 60)1(1,4 +Z x

a1,3 7 "1,3M,4 T ¥, 95,5 Y AR s T K e Y 4 S,

+ M x

+ Y x

+ Xle’2

+
21,2

w12 T ¥, 8%, 7 T X s

p¥2,6 T M2,3%2,2 Y My 4% 4



I -I
X = - [ Ly XX X + N x + N x + N x
r P v'2,6

a r
2,3 %2,2
. IZZ_I
X4 =" T | "2,5%2,2 TR, T R0 Y g,

FLx, o+ Lg 8, +Lg 8,
a r

*2,5 ~ *2,4
.1
X0,6 - T T %26 T V26

v

g
with

23,10 = %,1 %6 T V21
22,2 = %2,2% V2,2
23,3 %31t V33
22,4 = %24 T V2,4
29,5 = %,5 7 V5

Now that the subsystem models have been defined, the algorithms of Table 1 may
be used to solve the infimal unit estimation problems., Note that the coordina-
tion vector in Subsystem 1 was defined so that each of its components is equal
to a state in Subsystem 2. This resulted in products of coordination variables
appearing in Subsystem 1. By observing the original system state equations,

it is seen that different coordination variables could have been defined for
Subsystem 1 as products of the states of Subsystem 2. There 1s considerable
practical motivation in this problem for using the former approach, since 1f
all the coordination variables are each defined in terms of a single state, the
last term in the error variance algorithm of Table 1 vanishes, and results in a
reduction of effort involved in writing down the individual error variance
equations,

It is worthwhile pointing out that the primary motivation for using
hierarchical techniques is to reduce computational effort. This reduction is
realized by a decrease in the number of error variance equations which must
be solved. If the problem solved here had been solved without hierarchical
structuring, there would have been (13 x 14)/2 = 91 error variance equations.
For the solution presented here there are (7 x 8)/2 + (6 x 7)/2 = 49 error
variance equations. If more unknown parameters had been adjoined as additional
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states, the savings would have been more dramatic. For example, if it were
assumed that all of the static derivatives could be satisfactorily obtained
from wind tunnel tests and only the rate derivatives were to be identified
from flight test data, there would have been nine additional states instead of
only one, and the original system identification algorithm would have required
(21 x 22)/2 = 231 error variance equations. By comparison, the two-subsystem
hierarchical structure would require the solution of (9 x 10)/2 + (12 x 13)/2
= 123 error variance equations. This is a considerable reduction, but it is
evident that even the decomposed problem could be difficult to solve. Thus,
there is good reason for decomposing the original system into more than two
subsystems. If the system with nine additional states were decomposed into
six subsystems with state vectors given by

*1,1 u "2,1_T

X = xl’2 = ug X, = x2,2 = Wg
L*,3d LXd L%, L2gd
— — - N v ]

X3,l q x4,1 .

xy= | %3, | =8 x, = | M2 | = Yg
_x3’3 _MqJ :4,3 Yr

L Th4,4 ] P

X5.1 B *6,1 P

5,3 r 6,3 r

| "5,4 | e L %64 ] LM

then the identification algorithms would have 3(3 x 4)/2 + 3(4 x 5)/2 = 48
error variance equations instead of 231. However, there are now many more
coordination constraints which must be satisfied; thus, the infimal unit
identification processes may be difficult to coordinate. No computational
experience has been acquired with this six-subsystem decomposition. It is
interesting to point out that if a system can be satisfactorily decomposed

into a number of subsystems equal to the number of system states, then the
number of error variance equations equals the number of states, and the maximum
reduction in error variance equations occurs.

If the covariance of the turbulence is unknown, and it is desired to use
the algorithms of Smith and Sage [15] to adaptively estimate the system states,
there is again considerable motivation for a maximal decomposition. These
algorithms are most efficient for the case of a scalar observation. But if
the system were decomposed into several subsystems, each with a scalar
observation, these algorithms could be used effectively. Of course, other
adaptive estimation algorithms could also be incorporated to obtain the
subsystem state estimates.
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Computational Results

The algorithms of Table 1 have been applied to the sybsystem equations
written above to obtain the optimum estimates of the system states and thus the
parameter M,. To coordinate the infimal units a sequential coordination techni-
que was used which is based on a modification of equations (2.33) - (2.38).
Rather than use equations (2.33) - (2.36) to predict the new values of the
coordination variables, equations (2.37) and (2.38) were modified to the form

aHi(t)
Bi(t+At) = Bi(t) + Ksi aBi—(tj-' (3.9)
and
'ni(t+At) = gi[fcj(t)] (3.10)

Thus, the updating of B, is accomplished by correcting the old value of B, with
the gradient of H; with respect to Bi+ The technique for updating T{ was moti-
vated by thé equality updating method equation (2.31). Use of a sequential
updating technique such as that represented by equations (2.33) - (2.38) or
equations (3.9) and (3.10) makes the overall estimation algorithm sequential
thereby avoiding the increased computation and memory requirements of an
iterative technique.

The flight test data used in this study was generated from a simulation
of a more general set of 6-DOF equations than those given by equations (3.1)
and (3.2) in that the assumption that the angular deflections are small
(Assumption 7) was not made. This was done in an attempt to make the observations
more realistic than they would be if equation (3.1) and (3.2) had been used to
generate the observations. Atmospheric turbulence was simulated to give standard
deviations of 2.5 ft/sec for the horizontal turbulence components u, and v_ and
1.5 ft/sec for the vertical component. This turbulence level is fa%rly light,
but is not considered unrealistic since a concerted effort is usually made to
obtain flight test data in calm air. The stability and control parameters are
very close to being those published for the A-7 Corsair II flying in the cruise
configuration at Mach 0.6 at sea level. Equations (3.1) and (3.2) are written
with respect to the principal axis system. Further simplification was achieved
for the problem solved here by assuming that in the reference flight condition
the principal x-axis is in the direction of the relative wind; that is, in this
reference flight condition, the principal axis system is the body-stability axis
system. This results in W, being zero for the reference flight condition. It
is also assumed that the airplane has wings level and is neither climbing nor
diving in the reference flight condition so that the principal x-axis is not
inclined to the horizontal and thus 8o = 0. It should be mentioned here that
none of the above assumptions about the choice of axis-system and the reference
flight condition are necessary to solve the problem. They were made only for
convenience in completing this investigation with an amount of effort commen-
surate with the purpose of the paper, namely, to demonstrate the use of hierarch-
ical estimation in the context of the aircraft parameter identification problem.

The aerodynamic data used in the modeling of the airplane appear in Figure
2. Atmospheric turbulence was modeled by a first order filter driven by
gaussian white noise. A time constant of 0.15 sec was used for each shaping
filter so that
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T =1 =T = 0.15
v
g g g

The control inputs applied to the airplane in the flight test simulation are
shown in Figure 3. The control surface deflection sign conventions follow
reference [16]. The conventions are that positive 8o is trailing edge up,
positive §, is right wing aileron up, and positive 8y is trailing edge left.
The observation noise standard deviations used are given in Figure 2.

The observation data obtained from the flight test simulation was used
with the algorithms of Table 1 to identify the unknown parameter M,. The
identification of was accomplished using two different values og the initial
guess of the value of « For an initial guess of §1’7(0) = -0.500, the identi-
fication yielded a value of -0.88 as compared to a true value of -0.865. For
21’7(0) = -1.500, M; was identified as being -0.93. Neither of these estimates
is a bad estimate o Mg but they do show that the estimate of Mq is somewhat
sensitive to the initial guess. Estimates of Mg were also obtained with the
infimals decoupled (uncoordinated) by setting m{ = 0 and Bi = 0 for all time.
This is exactly equivalent to identifying Mg using the longitudinal equations
of motion and ignoring the lateral-directional dynamics and observations.

The estimates of Mg obtained by the decoupled solution were -0.93 for

%X1,7(0) = -0.500 and -1.02 for £;,7(0) = -1.500. It is seen that these
estimates are less accurate than those obtained from the 6-DOF solution.
Considering that the control inputs used in this study were probably not
optimal identification inputs, the quality of the estimates obtained by
hierarchical estimation was good. Mehra [20] has shown that for time-invariant
linear systems the optimal inputs for parameter identification are sums of

sine and cosine functions at appropriate frequencies. It is 1likely that the
results of that work could be used to improve the parameter estimates obtained
from the present study.

4. CONCLUSIONS

It has been shown that this method has good potential for use in the identi-
fication of aircraft stability and control parameters. There are, however, many
problems involved in using actual flight test data that were not confronted in
this paper. The authors are presently studying the case where the original
subsystem is decomposed into more than two subsystems and the case of unknown
plant and measurement noise moments. It is recommended that hierarcical
identification techniques for 6-DOF models be given careful consideration for
use in future aircraft parameter identification research.
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Parameter Estimation Using
an A Posteriori Criterion

by *
Ralph E. Bach, Jr.
Electrical Engineering Dept.
Northeastern University
Boston, Mass. 02115

INTRODUCTION

The determination of aircraft stability derivatives from flight-
test data continues to be an important application of parameter-
estimation theory. It is not surprising that many recent developments
in the theory and practice have been reported by workers in the aero-
nautics field. [1-8]. The identification problem, of course, is much
the same in all fields, although few physical models with typical pro-
cess and measurement disturbances are as well understood as the
aerodynamic model. A procedure for estimating noise statistics as
well as system model parameters has been described recently by
Mehra, et al [6]. The method, based on a maximum likelihood crit-
erion, has been successfully applied to a number of aircraft para-
meter-identification problems. In this investigation, an a posteriori
criterion is examined for use in such an application, when it is de-
sired to model process noise. The criteria lead to identical results
when there is no process noise,

MAP CRITERION

The use of an a posteriori, or ''smoothing" criterion for
identification of unknown parameters, including process and measure-
ment noise statistics, was suggested by Bryson and Frazier in 1962
(7]. An inuplementation was described by Tyler, et al [8], in which
state and parameter estimates were combined to form an augmented
state vector. In this presentation, however, the estimates are con-
sidered separately in order to develop an optimization procedure,

Here we assume, for simplicity of notation, a linear, time-
invariant, discrete message-observation model

x(i+1) = @x(i) + w(i), x(0)=xo R (1)
z(i+1) = Hx(i+1)+ v(i+1), (2)

where x is an n-vector and z is an m-vector., The noise sources are
independent, zero-mean, Gaussian "white' sequences with covariances

* The research reported here was supported in part by NASA, under
Contract No. NAS2-7397 (Ames Research Center),

223



E [w(ilw (1)1 =Qéyli-j) ; (3)
E [v(i)v' (1)1 =R 6y li-j). (4)
We have available N measurements

Z(N) = {z(1), z(2),...2(N)} , (5)

and wish to estimate the initial condition x_, the system parameter
vector p (unknown elements of ¢), and covariance vectors qand r

(unknown elements of Q and R). One procedure is to formulate an
a posteriori probability density function

p[X(N), 8/2(N)], (6)
where

X(N)= {x(1), x(2),...,x(N)} ; (1)

8=(xr, pT,a,r), (8)

and to maximize it with respect to §., Hence the term "maximum a
posteriori'" (MAP) estimation,

An expression for the a posteriori density function of (6) can
be shown to be [9]

A-exp (-B/2). { p(8)/p[2(N)]} , (9)
where
+
N-l oo o-1 T -1
B=3% [w ({)Q "w)+v (i+1)R “v(i+1)]. (11)
i=0
Note that p[Z(N)] in (9) is just a constant. In the absence of a
priori statistical information regarding 6, a useful performance
measure for maximizing the a posteriori density function* is
N-1 . -1 T -1,
J=(1/2) T [w (1)Q "w(i)+v (i+1)R " v(i+1)]
i=0
+(N/20n(IQ}-I R|). (12)
If there exists some a priori information about 8, we just add to
J the term
2T -1 2 :
(1/2)(6-8]"S "[6-6], (13)

., . e s
J is to be minimized.
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where 'é, S are the a priori mean and variance, respectively, and
p(e) is assumed to be Gaussian.

GRADIENT DETERMINATION

The estimation problem may be solved by applying a standard
variational procedure [10] to obtain a first variation of the perform-
ance measure (12), using the resulting gradient information to im-
plement a ''down-hill" numerical method. As usual, the dynamic
constraints (1) are adjoined to (12) with a Lagrange multiplier to
form

- N-1 .

J=J+3% AT +1D)[ex(D)+w(i) - x(i+1)]. (14)

i=0

Note that the last term of (14) can be written as
T T N-1.p
A (0)x(0)-A T (N)x(N) - ¢ A~ (i)x(i). (15)
i=0

Now, if we make differential changes in x(i), w(i) and 8, we obtain
the expression

8J = (3J/3q)6q+ (3J/ar)sr+ A T(0)6x(0) - A T(N)sx(N)

N-1

+_zo { (3H /3p)sp+rlap/aw(i)]ew(i)+[d H/ax(i)+xT(i)]ax<i)} , (18)
1:

where
=12 wTH)Q twd)+v T G+1R ™ v(i+1)]

AT+ (i) + wi(i)] (17)

A necessary condition for a minimum is that §J=0, We can
design our numerical procedure so that §J approaches zero with
successive choices of 8. First, choose 2(i) such that

A= [aH/ax]17, AN)=0; (18)

3 H/3w(i)=0. (19)
Expansion of (18) and (19) results in

\() =T A(i+1) - HIR I [2(i+1)-Hx(i+1)], A(N)=0; (20)

wii) = -Qp T Al (21)

The linear, two-point boundary problem of equations (1), (20),
and (21) may be solved by a "sweep' method [10], by assuming a

solution

x(i)=%(1) - PHE) @), (22)



Note that for i=0, (22) must reduce to the initial condition given
in (1). The resulting "smoothed" solution x(i) is obtained by first
solving the discrete Kalman filter equations

R(i+1) = k(1) + PU+DHTR L[ 2(i+1)- Ho(i)], %(0)=x,

; (23)
P(i+1) = [(oP)p +Q) +HTR TH]™L, B(0)=0, (24)
forward in time, and then solving (20), (21) and
Note that x(N)=3%(N).
With (18) and (19

(22) backward in time.
8J of (16) reduces to

) satisfied for any choice of @, the variation
- N-1
6J =(3J/3q)6q+ (3J/3r)sr+ M(0)8x(0)+ % (3K /3p)sp .

(25)
i=0
The gradients 3J/3q, aJ/3r may be calculated from

-1 -1 N-
(aJ/aqj)=N'traceQ (aQ/aqj)Q {Q-.z

1 T
0[w(i)w (i) ]/N} ;
1:

i .1, N-1
(33/3r;) = N* traceR (3R/3rR™" (R-3
i=

It can be seen,
iteration

(26)

v+ (+1)1/N} . (27)
0

however, that (26) and (27) vanish identically if at each
N-1 T

Q=(1/N) ¢ [w(iw"(i)]; (28)

i=0

N-1 T

R=(1/N)g [v(i+l)v™(i+1)]. (29)

i=0

It is possible that numerical instabilit

used, especially if § is some d

(28) and (29) are used, the

y will result if (28) and (29) are
istance from its minimizing value,

If
performance measure (12) simplifies to
J=(N/2)[(n+m)+1n (1QI*IRI)].

(30)
The usual smoothing solution, when P, 4, and r are known,
requires only adjustment of Xo to minimize J.
we need to implement a "downhill"
where, in addition to (26) and (27),

In this case, however,
method, using gradients from (25),
we have
3J/3x0 =2 T(0) (31)
_ N-1
3J/3p= ¢ O(a H/ 3p). (32)
1:
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If (28) and (29) are used, the variation 8J becomes
67 = (33 /3%,)6%,+ (3T/3p)6p. (33)

Implementation of a gradient method may result in difficulties
with step-size determination and slow convergence in the neighborhood
of a minimum. An alternate strategy having better convergence prop-
erties is the method of quasilinearization, which has been successfully
utilized in the maximum-likelihood applications described in References
[1-6]. An extension of the quasilinearization method for minimizing
the a posteriori criterion (12) is considered in the next section,

QUASILINEARIZATION
First, recall that if the parameter set § is known, the a
posteriori criterion is minimized by the "smoothed'" solution, generated
by computing
X(i+1) = oX(i)+ P(i+1)HTR_1[z(i+1)-Hcp?c(i)]; (34)
P(i+1) = [(cpp(i)@T+Q)“1+HTR'1H]_1, (35)

forward in time, with %(0)=x_ and P(0)=0, and then computing

(o]
x(i+1) = X(i+1) - P+1)A({i+1); (36)
A = A(+1) - HIR [ 2(i+1) - Hx(i+1)] ; (37)
w(i)=-Qp T A(), (38)

backward in time, with »(N)=0, where

N-1 T

Q=(1/N) ¢ [w@w ({i)]; (39)
i=0
N-1 T

R=(1/N) v [v(+1l)v™(i+1)], (40)
i=0

Now, suppose that we wish to improve our estimate of X,
and p. Let

a=[x5, pT1%. (41)
The method of quasilinearization provides an explicit expression for
a parameter step 8q that reduces the corresponding variation of J
to zero. Actually, the procedure is equivalent to expanding J in a

Taylor series about a solution (in this case, the ""smoothed" solution)
and keeping one of the second-order terms.™* The minimizing parameter

* See Denery [2].
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change is given by
sa=-M '(aJ/3a)T, (42)

where, for the a posteriori criterion of (12), it is easily shown that

N-1 @ T -1
BJ/BG=:‘ZO[W (1)Q “aw(i)/ag+v (i+1)R dv(i+1)/3a]; (43)
1:
N-1 T -1 T. -1
M=§70[(aw(i)/aa) Q “awl(i)/3at(dv(i+1)/3a) "R “av(i+1)/aq], (44)
1:

where, from (38) we have
. _ -T T -T .
aw(i)3a=-Qp ~Hap/3a) o, +ar(i)aal, (45)

All)
and from (2)

3v(i+1)/3a = ~Hax(i+1)/ 3¢ . (46)
Evaluation of (43)-(46) requires computation of the "sensitivity"
functions 3X(i+1)/3q, 3P(i+1)/3q, 3r(i)/3q, and 3x(i+1)/3q. These are
determined from (34)-(37) to be
33\((1"'1)/5% =[I- K(i+1)H][cpa;i(i)/aaj'*'(acp/Baj)ﬁ(i)]
+(aP(i+1)/aaj)HTR'1[z<i+1)—Hcp>'2<i)] , (47)

with 3%(0)/3p=0 and 3%(0)/3x_=1I;
o]

dP(i+1 )/Baj = [I-K(i+1)H] [(acp/aaj)P(i)cpT'*'cp(aP(i)/aaj)cpT
+cpP(i)(bcp/aaj)T] [I-K(i+1 )H]T, (48)

with  3P(0)/3a;=0, and K(i+1)= P(+1)HTR

ax(i)/aoL:i = (acp/accj)T[ A+1)-HTR (2 (i+1 )-Hx(i+1))]

4T

® HTH‘-1

Hax(i+1)/aaj , (49)
where a;\(N)/an. =0, and

ax(i+1)/aoL:i = a§(1+1)/aaj - P(i+1)ax<i+1)/aaj - [aP(i+1)/Bc,j]X(i+1). (50)
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We note from (48) that aP(i+1)/axo=0.

ALGORITHM

A procedure for identification of the initial state, system
parameters, and noise statistics utilizing quasilinearization to minimize
the a posteriori criterion would be as follows:

(1) Choose g and solve the Kalman-filter equations (34), (35)
and the sensitivity equations (47), (48) forward in time.

(2) Solve the smoothing equations (36), (37), (38) and the
sensitivity equations (49), (50) backward in time,

(3) Evaluate M, 3J/3q during the backward run and compute
the revised § from (39), (40) and (42).

(4) Continue until 6J=0 and a minimum of J is obtained.

COMMENTS

If the system model is without process noise, i.e., w(i})=0
for all i, there is no need to smooth the data, and from (35) we see
that P(i)=0 for all i. In this case, the expressions for 3J/3q in (43)
and M in (44) reduce exactly to those given by Grove [5] and Mehra
[6] for parameter estimation using a maximum-likelihood criterion
(no process noise) and quasilinearization,

The number of sensitivity equations to be solved during each
iteration using quasilinearization for minimization of the MAP criterion
is given by

Nmap= [2n+n(n+i)/2]1‘n2(ﬂ+1)/2 ) (51)

where 1 is the number of parameters in g and n is the order of the
model. For a typical lateral-stability identification problem with
1=23, n=4, we find that N,,,;,,=374. The corresponding number for
the maximum-=likelihood criterion, where the performance measure is
expanded about the filtered solution [117,is given by

2

N_ ;= [n+nm+1)/2]1-n°(n+1)/2, * (52)

which yields N,,) =282 for the example considered. For the case of
no process noise, the two criteria yield identical results, with the
number of sensitivity equations given by

N =nl. (53)

>"Mehra‘s procedure reduces this number(6].
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Finally, it should be emphasized that application of the MAP
criterion requires further processing of the data than the ML criterion.
In the context of the presentation here, it can be seen that the MAP
estimation procedure is an extension of the ML procedure, A basic
question remains: how do the results obtained compare in practice?

At this writing only laboratory experiments on first-order systems
have been performed and no comparisons with maximum-likelihood
results have yet been made.
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A SQUARE ROOT FORMULATION FOR THE COMBINED
STATE-PARAMETER ESTIMATOR WITH APPLICATION TO
THE IDENTIFICATION OF SAILPLANE PERFORMANCE

By Michel R. Froidevaux and Charles E. Hutchinson

Electrical and Computer Engineering Department
University of Massachusetts, Amherst, Massachusetts 01002

SUMMARY

A square root formulation is presented for the discrete combined state-
parameter estimation problem with Tinear plant dynamics, Gaussian random dis-
turbances and constant but uncertain parameters. The estimator is a combina-
tion of the classical Kalman filter and a maximum 1ikelihood algorithm which
maximizes the parameter log-1ikelihood function using a first-order search
routine.

INTRODUCTION

. This paper offers a new way to propagate the gradient of the log-Tikeli-
hood function, extending the concept of the "popular" square root filtering
technique (ref. 1), to the combined estimator, thus preserving the outstanding
properties of the square root filter algorithm.

The derivation of the complete recursive equation for the log-Tikelihood
gradient in its "square root matrix" form is given for successive scalar mea-
surement updates as is current practice in many implementations, since it
improves both the numerical characteristics and the efficiency of the estima-
tion procedure.

Two (n x n) complexified Cholesky square root decompositions and two
(2n x n) triangularization algorithms are shown to be necessary for producing
the needed updates for the square root covariance gradient matrices.

COMBINED STATE-PARAMETER ESTIMATOR

The following notation is used to describe the discrete time linear
system:
x =9 (a)x +G(a)y (1)

n+1 n n n

z =H(ax +w (2)
n n n

* The research reported herein was partially supported by the Air Force Office
of Scientific Research, Air Force Systems Command, USAF, under Grant HNo.
AFOSR-73-2443, and by the Measurement Systems Laboratory of the Massachusetts
Institute of Technology.
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X : state vector, dimension Ny
n
Z : measurement vector, dimension N,
n
o : uncertain parameter vector, dimension p
W, V ! zero mean, independent, Gaussian sequences, dimension N_ and

n n Nv’ with covariance matrices R and Q, respectively.

If we let Pn(g) be the state error covariance matrix at stage n, then one
formulation of the discrete square-root Kalman filter is as follows (ref. 1):

.
P (a) 8 Py = SpSp (3)
Q=u' (4)
R = WW' (5)

Where Sn’ U, W are the uniquely defined "Cholesky" square-root matrices for
Pn’ Q and R, as discussed in ref. 1.

Time update:

e (wk (6)
n+l n
sT” sT ol
n+l| _ nn
=T (7)
0 ol 6!
nn

where T is a suitable orthogonal matrix (which need not be calculated in
practice).

Measurement update: Use N, scalar measurements (assume R is diagonal)

% (K) = % (k=1) + K (k) [z, (k) - hT(K) & (k-T)] (8)
n n n n n
where h'(k) is the k row of the H (a) matrix and for k = 0, & (0) = &°,
n n n
Sn(O) = S, and we have:
K (k) = ap(k) s,(k) ST(k) b (k) (9)
n n
1T T
a (k)" = ﬂn(k) S,(k) S (k) h (k) + R(k) (10)
n
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Sp(k) = Splke1) = (k) K () nl(k) s, (k=1) (11)

v, ()71 =1+ [a (k) R(K)]'/2 (12)

where k = 1, 2, ..., Nz,
n=0,1,2, ..., N, and R(k) is the appropriate element of R.

For the purposes of initialization X and Po are assumed known.
0

Now, if we define Z as the (N - NZ) vector formed with "all" the successive

measurement vectors, then we can define the likelihood function of the para-
meter o as follows. Let p(Z /o) be the conditional probability density of Z
N N

given a. Thus, &, the maximum likelihood estimate of the parameter o, is the
value of a which maximizes p(Z /o) for a particular Z . The log-likelihood
N N

function is defined as
gy(e) = In [p(LN/_a_)] (13)

For the general linear system (1) and (2) with Gaussian noise, the log-
likelihood function can be shown (ref. 3) to be the sum of a "bias" term,
independent of the measurements, and an "observation" term which depends on
Z as follows:

N
2en() = £y pias(@) * &y, opservation®) (14)
where N
EN,bias(SJ = -NN, n(2n) - nZ] In Aﬁ(g) (15)
. o y=1
EN,observation(g) - Z s (o) An(g) 8 (o) (16)
n=1 n n
and
8§ (a) =z - HX (17)
n n n“n
25(a) = E {5 (a) 67(a)} = H_P2(a) H + R (18)
n\& R n n& My

(8 (o) is sometimes referred to as the innovation process and must be white
n
for satisfactory performance).

If the z vector is processed one component at a time, the covariance of
n
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k™ innovation (scalar) is simply:

HORNNORAOERE h (k) + R(K)

= ar'(k) (19)

so that we obtain the desired result:

N
N z
26y (a) = -NN Tn(2n) - nzl k§1 [na”t(k) +a (k) s2(k)]  (20)

where sn(k) is now the scalar innovation sequence:
5 (k) = 2 (k) - h'(k) & (k-1) (21)
n n T

We note that equation (20) is very easily implemented if one has already
coded the square-root filter equations (6) to (12?; only the maintenance of
running sums is required to calculate EN(g).

GRADIENT OF LOG LIKELIHOOD FUNCTION

We shall derive an expression for each component of the gradient for the
log-1ikelihood

by postulating a complexified Cholesky square-root form for the gradient of the
covariance matrix. (Indeed, the gradient of the covariance matrix is again
symmetric, but not positive semi-definite in general). That is, defining

Moot M1 ™ e [Pp(e)] = o [$yS7] (22)

n,1 "'n,l =
only M need be propagated, M being complex in general.

The general express1on for the %Eﬁ component of the gradient of the log-
1ikelihood function is given by

sey(e) N Nz oea (k) 2 - o] Vo P Gy
2 = - { 1) (k (k + 2a (k) & (k } (23
Boz-l n=1 k=1 oa 1 n n Ba-l
where
% 2 a'h'T T T T
n
—= = -3 2——-—SS‘ h +h M Moy h (24)
Ba] n Su] " n,l )1 .
and, T -
= - X (k-1) - h ' (25
Ba1 au1 n aa]

234



Only the propagation equations for M, and the gradient of X remain to
be obtained. These quantities are provided as follows. First for the state
gradient:

Time update: Use a single vector update

0%~ 39X
= = a0
n+1 n n ¢
=o —L+ g (26)
Boc-l n 'aoc-I aa] h
since x 1is known (fixed), then we have necessarily
0
X
—-—0 =
80&-[

Measurement update: Use Nz scalar measurements

n _ n n n
aa1 - Ba-l * aa] (Sn(k) * l—<- (k) Boc-l (27)

ax (k) 8x (k=1) oK (k) 36 (k)

substituting (25) into the above yields

o (k) ok (k-T) K (k) 3h (k)
n n T n n s
= [1-K (k) h(k)]+ s (k) - K (k) x (k=1) (28)
Ba-l Boc-l N h aoc-l n " aa] h
2K (k)
where ™ is obtained similarly by differentiating (9):
1
K 5 3
N _ coc-T N _n . T
Ba - onn o * % o 1+ & Mn,] M, L (29)
1 1 1 n
2a,
and o has already been calculated in (24).
1

Now, the square-root covariance gradient may be calculated according to:

Time update: Differentiating the basic covariance time update equation:

. oslT L T.T
Sie1 Sre1 = % SpSp %

T
n+1l * Gn Q Gn (30)

and recalling our definition of Mn:

T T
90 90 oG 3G
. T - _n T.T T T T n nQ T _n
Mn+1,sL Mn+1,z - daq Snsnon * CDn Mn,] Mn,] CI)m + Qnsnsn Bu] * Ba] Gn * GnQ aa] (31)
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Letting

0d 3G
T T _n T
En ¥ {Saq'snsn n " by Q Gn} (32)
and
T T
JJ, = E +E (33)

where Jn is obtained by a complexified Cholesky decomposition, then we have:

T T
Mn+1,2 Jn (34)
- - =T - .- o= 34
0 YR

n,1 ™n
with T] being a suitable orthogonal transformation. As for the state equation,

since P0 = SOS0 is fixed, then M0 1 = 0,

Measurement update: Use NZ scalar measurements.

S,(K)ST(K) = S, (k=1)S!(k-1) = a_(K)S_(k=-1)S!(k-D)h(K)NT(K)S (k-1)ST (k-1) (35)

To obtain (dropping the k index for clarity):

T _wm T . T T . T
Mot Maa1 = Mo Mo - M M “ B hn Moot M
. T T . J T o LT
{M 1 Mn 1 hn hn S S +S S h h M 1 Mn 1
sh!  oh
T n n . T T
#5252 T N+ Ty gose } (36)
nn n aoc] aoc-l " nn
If we Tet BDT
. . LT T vl n J
ve o =M Mo hh +scset b =] ses (37)
n,]l n,1 n,l " n nno= 9oy
(Note: wﬁ’] is real)
Then (36) becomes
ba
T _ s LT T s LT
Mn,] Mn,] B Mn,1[I - Mn,] h aa] b— M 1] M 4 n 1 Yn 1 (38)
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where

. S T
Yn,l Yn,] = Vo * ¥n,1 (39)

Now, the bracketed term in (38) can be decomposed as

(1= 11 -8y ;2? o ﬁn!‘-: VRSN ':T;l Mo ﬁnﬁ: Ml (40)
with Bn,] given by:
sl =110 - %{ M M ﬂn)”z' (41)
Using this result, we rewrite (38) as
Mn,] M:,1 - Nﬁ,] N6T1 Ty Yﬁ,] YﬁT] (42)

where Nn 1 1s complex in general and is now obtained by substituting (40)
into (38) as sa
=My - =D oM M phT
Mn,.l 3(1] Bn,] n,] n,.l _n_n
and Yp,1 is computed via the complexified Cholesky decomposition algorithm from
the expression (39) in much the same way as matrix J_ for the time update in

the previous development. (Both decompositions are Ny Nx')

M‘

n,1 (43)

N1

Finally, the measurement update equation for the square-root covariance
gradient is given by:

T T

M (k) e 4 (k1)

R T PR T (44)
0 i Va(k-1) Yrﬂ](k-n

k=1, «.., NZ

where j = /=1 and T2 is again a suitable orthogonal transformation which

need not be further defined. HMNote that the update equations (39) and (44)

may be implemented by using a triangularization algorithm in a complex space.
IMPLEMENTATION

A few observations can be made when attempting to reduce computation
time while performing a square-root combined estimation, When the dimension
of x is small, a fair amount of computer time can be saved if one substitutes
a "parametric propagation" in lieu of the exact propagation equation by
functionally curve fitting certain matrices such as Sn’ Sﬁ’ Mn’ Mﬁ, or the

gain vectors Kn, using a set of "relevant" values for the parameter o over an

assumed domain of variation (steady-state filter gains as a function of o may
also suffice for some specific applications).
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A first-order “fast update" has also been suggested (ref. 2), computing
for state estimates over N data points with a new value for the parameter
estimate a: wuse the newly evaluated @0 h and Gn matrices to propagate x

3x n
and T but retain the same second-order statistics, Sn

1
previously, unless the parameter estimate has changed by more than some
prespecified amount (the state estimate incorporates the newest o, except
that the gains K are generally based on older estimates. In general, any

n

higher order terms may be neglected by a proper sensitivity analysis performed
with extensive simulation trials, or better, using the concept of "ambiguity
functions" as discussed in (ref. 3).

and Mn’ as used

Although "Quasi-Newton" methods have been traditionally used in the past
for finding the unconstrained maximum of a scalar function EN(g), where o is

a p vector (e.g. Davidon, Fletcher and Powell, Broyden, Murtagh and Sargent,
of which Fletcher and Powell's method is probably the most widely used), it

is suggested here that a more recent algorithm be used, that of Jacobson and
Oksman (ref. 4), which is based upon homogenous functions rather than quadratic
models. The major advantages of the latter algorithm is that it does not
require that a minimum along a line be found, does not require evaluation or
estimation of second derivatives and is superior to Fletcher and Powell's
algorithm on the classical test functions.

SAILPLANE MODEL

This section contains a practical, simplified model of an instrumented
sailplane, carrying an inertial measurement unit, an altimeter, an airspeed
indicator, and a device measuring the body pitch angle. The wind is assumed
to be horizontal, a function of altitude and time only, and directed along
the "x" axis. The inertial coordinate system and body orientation used in
this example are illustrated in Figure 1.

The sailplane mass and wing area are denoted by M and S respectively.
The 1ift and drag forces are given by

2

L Ve's (45)

1/2 o CL

D 2

1/2 0 CH VS (46)

In the equation above p is the air density. For simplicity it will be assumed
that CL is given and CD is to be identified.

Using the orientation of Figure 1 and classical techniques the dynamical
equations for the sailplane performances can be expressed in the form:
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5 = Ve
MY

= - MW cos v - D - Mge
. (47)
MVe = MWe cos ¢y + L cosu ~ Mg
MV¢ = Mw sin ¢ - L sinu

For the purposes of this study a realistic wind model would be of the
form:

W(z,t) = nzlyy(t) + y,(t)] (48)

where y](t) is a random walk and yz(t) is first order markovian random process.
That is

nT i (49)
.y2 = - B.VZ + wz(t)

where W and W, are white noise processes.

Combining equations (47), (48), and (49) yields, after some rearranging
a six dimensional state variable model given by:

X, = 2= Ve

;2 =V = - {Ven(y1 + yz) - nBzy,} cos y - ACDV2 - go

§3 =¢g=- {en(y] + yz) - Il%E-yz} 6 COsS ¥ + ACLV cos u - %

Xg = 0= (on(yy +¥,) - 2B y,1 sin y - ACV sin u (50)
%=91=W

is - 92 = By T W,

There are assumed to be four measurements in the measurement vector: Xqs X5
X35 and Xy

The numerical quantities appropriate here are:

CL constant = 1.0

KCE
Cp = Cpo * TAR

CDo = ,0130 (for simulation purposes)
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K =1.22 (for simulation purposes) M= 28.3 slug
AR = aspect ratio = 25.8 n = Eﬁ%ﬁ-ft’]
- pS .1 -1
A= M B = 59 Sec
- 3 24 _ 2
p = .00238 slug/ft E[w]] = 10 kts“/hr
S = 140 ft2 E[w5] = 28 kts®

SIMULATION RESULTS

Given the time and budget limitations relevant to this project, only
a limited number of specific test runs were made for this problem (no Monte
Carlo run series were made), none including a full square-root gradient
search. Instead, a comparison between an extended Kalman filter and a
maximum 1ikelihood algorithm using a patte.n search minimization was under-
taken, leading to some interesting observations.

As expected from earlier experience with uncertain plant parameters,
the sailplane drag parameter identification problem is quite insensitive to
K. In all cases, a very "flat" behavior was observed for the log-likelihood
function throughout the minimization search. The extended Kalman filter had
great difficulty in getting a meaningful estimate of the drag parameter, and
quite often diverged totally from the correct answer.

The measurement accuracy and measurement sampling rate which were chosen
purposely within "practical" ranges (10 ft. error on altitude, 0.01 degree on
pitch angle and 0.5 ft/sec accuracy on the velocity measurement with 0.5 sec.
sampling rate) was seen to be "marginal" with respect to the extended Kalman
filtering assumption, i.e., trajectory tracking by the filter was not quite
good enough to allow good performance from local linearization. An actual
flight test may be implemented in the future by the MIT measurement systems
laboratory.

No attempt was made to use smooth-type sailplane trajectories, which
could have led to different results. The dynamic model was simply a "fixed-
stick" (uncontrolled) sailplane originating at some specified altitude with
a given velocity, pitch and bank angle (generally different from the smooth
steady-state flight conditions) in a disturbed atmosphere.

It is believed that the more sensitive algorithm (with double precision)
using gradient information will be valuable here and will be tried for this
particular problem. Also, it is clear that a very precise instrumentation
is needed for trajectory tracking, with possibly a higher measurement sampling
rate.
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A UNIFIED APPROACH TO AIRCRAFT PARAMETER IDENTIFICATION*
By David E. Stepner and John A. Sorensen

Systems Control, Inc.
260 Sheridan Ave.
Palo Alto, Ca. 94306

SUMMARY

The most accurate identification results are obtained when all three ele-
ments of the identification process - the identification algorithm, the control
input and the instrumentation system - are considered in a unified approach.
This paper discusses this type of approach for the design of optimal control
inputs and for determining the effect of the instrumentation system, in each
case with respect to the identification process. A new approach for the design
of control inputs which optimize the sensitivity of the system output to the
unknown parameters is given. Results using these inputs in an extensive simula-
tion of the identification process indicate they perform measurably better than
doublet type inputs. A new technique is then presented for specifying an opti-
mal instrumentation system or for determining the effect the instrumentation
system has on the accuracy of the parameter estimates. Results with this tech-
nique prove that unmodeled instrument errors can increase the uncertainty in
the values of the identified parameters.

INTRODUCTION

It is generally the parameter identification algorithm that is considered
as the key element in obtaining stability and control derivatives from flight
test data. However, the control input and the measurement system are equally
important, and the accuracy of the identified aircraft parameters depend strong-
ly on the design of the control input and selection of the measurement system.
This interrelationship is shown in Figure 1. As will be discussed in the suc-
ceeding sections, the control input and the measurement system must be designed
with this interrelationship in mind, and the objective in their design must be
to increase the accuracy of the identified parameter estimates. For this rea-
son, evaluation of the techniques discussed in this paper is done via Monte
Carlo (or ensemble) simulations of the entire identification process.

I, OPTIMAL INPUT DESIGN

The problem of specifying flight control inputs that will enhance the iden~-
tification of parameters is one of insuring that all the response modes for
which the parameters are to be identified are adequately excited. The required
excitation is dependent on the modes which are to be identified, the instrumen-
tation system that has been specified and the length of time that is available
for recording the system response. For example, the short period response mode

*
This work was supported by NASA under Contracts NAS1-10700 and NAS1-1079
and by AFOSR under Contract F44620-71-C-0077.
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requires different types of inputs than the phugoid mode. Although adequate
excitation of the aircraft modes is obtained using standard inputs (step func-
tions, doublets), the real purpose of addressing this problem is to specify
quantitatively what the "optimal" inputs would be for a given aircraft, the
specific stability and control derivatives to be identified and the specified
instrumentation system,

The complete theoretical development for the design of optimal control in-
puts for identification is given in References 1-3 and only an extremely brief
statement of the problem is given. The performance criterion used to compute
the input is the sensitivity of the system response to the unknown parameters.
It is also assumed that an output error or maximum likelihood method which can
handle arbitrary inputs is used for the derivative extraction.

For the linearized aircraft equations of motion
x = Fx + Gu
where u is the control vector, and measurements given by
y=Hx +n

where n is a vector of zero mean white noise with covariance R, the information
matrix M for the unknown parameters p is written as

T
T
M= (ZVHT 7! g(3)ae.
op op
(o]

Allowing for the possibility of weighting the sensitivities, thereby reflecting
the relative importance of the parameters, the scalar criterion used was

maximize tr{wM}

with W a diagonal weighting matrix. The class of inputs considered for this
optimization problem were those with specified energy.

DESIGN OF MONTE CARLO SIMULATION

In order to provide a realistic evaluation of the advantages of the opti-
mal input over a sub-optimal doublet input of equal energy, a Monte Carlo simu-
lation of the identification process was performed. Both the phugoid and short
period modes of the longitudinal equations of motion were used in generating
the simulated flight test data, although only the short period derivatives were
to be identified. In addition, the short period parameters of the 4 state model
used to generate the optimal input were changed by approximately 50% from the
equivalent parameters of the model used to generate the data. This was to sim-
ulate the situation of designing the input based on wind estimates.

The four state longitudinal equations of motion for the C-8 aircraft which
were used for computing the optimal input are
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where u is longitudinal velocity (ft/sec)

® is pitch angle (°)
q is pitch rate (°/sec)
o is angle of attack (°)
6e is elevator deflection (°)
and — —
.125
.125
R = E{ninj} = 125 Gij
.122

=

is the discrete noise covariance. The optimal input was designed with respect
to the five short period parameters, indicated by the underlining. For a speci-
fied length of 2 sec., the optimal input (energy = 58.0) and the doublet input
of equal energy, are shown in Fig. 2.

The stability and control derivatives which were used to generate the simu-
lated flight data are illustrated below

same | same
___i _____ — —— —
F = | -2,238 -,28 |; G =|-.829
same |
|1 ~.368 -.0075

245



Fifty noise sequences, of 100 points each, were generated and added to the de-
terministic state vector values generated by both the optimal and doublet in-
puts. (It must be noted that the 100 data sequence length is not really adequate
for accurate parameter identification.) Each of these 100 sets of simulated
flight test data (50 for optimal input, 50 for doublet input) were processed in
exactly the same manner using the maximum likelihood identification algorithm
(Reference 3). The parameters to be identified were the five short period der-
ivatives and the measurement noise covariance matrix.

RESULTS OF THE MONTE CARLO SIMULATION

The Monte Carlo simulation, as stated, consisted of 100 runs of the identi-
fication procedure. After each, the parameter estimates, information matrix and
its eigenvalues, and the parameter covariance matrix and its eigenvalues were
saved. The ensemble results are tabulated in Table 1.

The theoretical values of the trace of the information matrix using the
actual values for the stability and control derivatives were computed to be
2,12 x 107 and 4.74 x 105 for the optimal and suboptimal inputs, respectively.
The average values, from Table 1, were 2.15 x 107 and 4.79 x 105 indicating that
50 runs were sufficient for obtaining accurate parameter estimate and informa-
tion matrix statistics.

By almost all measures of performance, the optimal input has performed
better than the suboptimal input. The determinant of the sample covariance,
giving a measure of the overall parameter uncertainty (volume of uncertainty
ellipsoid) based on the actual derived parameter estimates, was four orders of
magnitude smaller for the optimal input. The eigenvalues of the sample covari-
ance were smaller, on a one-to-one basis, for the optimal input, indicating a
smaller dimension for each axis of the uncertainty eillipsoid.

The histograms of some of the parameter estimates are shown in Figs. 3-5.
For the My, Z, and Z5 parameters, the optimal input definitely produced a
better ensemble of pafameter estimates. The mean estimate was much closer to
the actual parameter value and the standard deviations and mean square errors
were smaller. The performance for the two inputs was about the same for M_,
while the suboptimal input did perform better for Ms . However, it should be
kept in mind that the accuracy of the parameter estimates themselves, however
desirable, was not a direct performance objective. Considerably more work is
involved for that performance objective due to its nonlinear nature. For this
evaluation, the determinant* and trace of the parameter estimate covariance
matrix were the criterion of interest.

II. ANALYSIS OF FLIGHT INSTRUMENTATION ERROR EFFECTS

A principal source of error in identifying stability and control deriva-
tives is the errors in the flight instrumentation. A method for quantitatively
assessing the effects of instrumentation errors such as biases and mounting

- .
The weighted trace criterion can be made to very closely approximate the
determinant of the information matrix.
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misalignment on the accuracy in estimates of individual stability and control
derivatives is now summarized. More complete details can be found in References
4 and 5. This method is useful for specifying both the accuracy and the type

of flight sensors that should be utilized to satisfy the objectives of the
flight test program.

ERROR ANALYSIS TECHNIQUE
The maximum likelihood identification technique (Reference 3) chooses para-
meters P (stability and control derivatives) which minimize the cost function
o AT-l Y
J= Z(y,=9) R (y, =-§) (1)
i i i i
i=1
where y, are the measured outputs of aircraft motion as perturbed from
i
steady flight
?i are the estimated outputs based on the estimated parameters, p
R 1is the covariance of an assumed white noise in the output measure-
ments,

Minimization of Eq. (1) is done via modified Newton-Raphson optimization

with
27-1 ,.T
A ~ ) 3J
Pre1 = P - [;:2'] 5p 2
and
dy
3J 2 o 2T -1 4
5= -2 151(y1 -9 R )
2 n day \T oy
3—‘27 -2 3 (-5-—1-) R-l(g—i) (4)
dp i=] P P

In this analysis, it 1s assumed that the true value of p is known, and the
effect of instrument errors is small. Thus, only one application of Eq. (2),
with P set at the true value p is needed to determine the effect of the measure-

ment error on the estimate of p. From Eq. (2), the error due to instrument
errors 1s then

27-1,.T
d )
GP-ﬁ-p--[—‘%] -5-1':- (5)
3p
n |3y T dy 1l n eyt
- [ I Rt Dot Ry, - 9
1=1(°P P 1=1 °P
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Output errors only affect the value of Y4 in Eq. (5); the desired parameter
sensitivity is then

d 2]t B ¥y oy Wy
ap i=1
ayi
where —— 1s obtained by differentiating the output with respect to any additive
or multiplicative non-noise error source e.

The parameter errors due to known measurement errors are then
E(op} = 2LB) g(e) )

For random measurement errors, the expected covariance of the parameter esti-
mates is

T
E(6p 6p"} = E{6p &pT}_ __+ ?-B%Pl E{e el} %ﬁﬂ (8)

MEASUREMENT SYSTEM

The output measurements can be expressed by the equation:
v, = TyT + B + Wy 9)

where w, 1s white noise with E{wi} = 0; E{wi ij} = Raij

Yo is the actual output vector

y; 1is the recorded measurement vector

is the instrument bias vector

1s a matrix whose diagonal terms are scale factor errors and off-
diagonal terms represent cross-coupling errors.

Some specific off-diagonal terms of the T matrix include
1) o and B boom correction
2) accelerometer location corrections

3) misalignments (accelerometers and gyros)

The resulting identification process including these instrument errors is de-
picted in Figure 6.

The following seven instruments were assumed to be available for longitud-
inal measurements:
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pitch altitude gyro

pitch rate gyro

angle-of-attack vane

. air speed indicator (pitot tube)
. longitudinal accelerometer

. normal accelerometer

. pitch angular accelerometer

NouwnmpwnE

The accuracy range of these instruments is summarized in Table 2. As a means of
having a reference set of instruments with which to conduct the study, a "base-
line" set of instrument accuracies was chosen within the range of Table 2. This
set of accuracies is listed in the "base'" columns, and was assumed to represent
instrumentation quality of a typical flight test program.

RESULTS FOR LONGITUDINAL MEASUREMENT ERRORS

The time history of pitch angle, pitch rate, angle-of-attack, and longitud-
inal speed perturbations about the reference flight path used to identify the
longitudinal stability and control derivatives of an F4 (and a similar shaped
input for a DC-8) is shown in Figure 7. The measurement data sequence consisted
of 300 points taken every 0.05 sec. over a 15 sec. time span. The elevator de-
flection consisted of a doublet of +2.5° followed by step inputs of -0.5° and
0.5°.

In studying the effect of instrument errors, two different identification
setups were used. In the first, only the stability and control derivatives were
identified so that all bias errors affected the total estimation uncertainty.

In the second, it was assumed that all instrument biases but one were estimated
so that their contributions were essentially eliminated. 1In both cases, initial
conditions were not used as error sources.

Table 3 presents the results of using the ensemble analysis technique to
compute the standard deviations of the longitudinal parameters for both aircraft
using the baseline set of errors. It can be seen that the addition of non-noise
error sources has a substantial effect on the standard deviation of the para-
meter estimate accuracy. The errors in parameters M,, Z,, X,, and X, are in-
creased by over an order of magnitude by the non-modeled instrument errors.

This growth in the standard deviations is illustrated more distinctly in
the bar graphs in Figure 8. It must be pointed out that the largest errors are
in the parameters associated with the phugoid mode. This is because the 15 sec
data span taken does not have the necessary information content to obtain better
accuracies for the parameters which govern the phugoid motion., From Figure 8 it
can be also seen that the effects of the instrument errors on the parameter
accuracy are quite similar for both aircraft. Thus, these results appear to be
mainly dependent upon the instrument error magnitudes, rather than the aircraft
tested.

Also, from Table 3, the estimation of biases increases the parameter devia-
tion due to noise only, but generally reduces the total deviation of each para-
meter. Thus, it might be better to structure the identification scheme so that
other errors, such as the accelerometer misalignments, are also estimated, in
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addition to the biases.

Parameter sensitivities éégzl are useful in specifying the instrumentation

accuracy required. As an example of this application, Figure 9 illustrates the
deviation of the parameter Zg due to the uncertainty in the longitudinal posi-

tion of the F-4 aircraft centgr-of—gravity. For the Zg uncertainty to be less
than 10% of the nominal value, the position of the centSr-of-gravity must be
known to within 0.4 ft.

CONCLUDING REMARKS

The process of extracting aircraft stability and control derivatives has
been shown to be a much broader problem than just specifying an identification
algorithm. The accuracy of the identified parameters depend very strongly on
both the control input applied and the measurement system used. New techniques
for the design of optimal control inputs and the specification of an instrumen-
tation system have been presented. It has been shown that, when evaluated in a
simulation of the overall identification process, the optimal input greatly re-
duced the uncertainties about and coupling between the unknown parameters. The
evaluation of the instrumentation system design technique has shown that un-
modeled instrumentation errors can have a large effect on identification accur-
acy and the improvements in parameter accuracles can be achieved by identifying
the dominant errors,
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TABLE 1. MONTE CARLO RESULTS BASED ON IDENTIFICATION

FOR 50 SETS OF SIMULATED DATA

Trace of Sample Covariance
Determinant of Sample Covariance

Eigenvalues of Sample Covariance

Parameter Standard Deviations

Average Trace of Information
Matrix

Eigenvalues of Average
Information Matrix

Average Determinant of
Information Matrix

Average Trace of the
Covariance Matrix
(Cramer-Rao Lower Bound)

Lower bound on parameter
standard deviations (from

Cramer-Rao Lower Bound)

Optimal Input

Suboptimal Input

242
1.62 x 10
.234
.725 x 10~
.252 x 10~
.188 x 1074
.202 x 1077

2
3

407
«295
.00925
0771
.000570

~

2.15 x 10

2.14 x 10
2.95 x 10
6.56 x 10
1.39 x 10
1.12

N W SN

4.70 x 1018

.182

«351
.234
.00876
+0665
.000247

19

.315
1.501 x 10~
.262
.514 x 10~
<115 x 10°
<766 x

«126 x

1
2
1074
1073
.307

«491

.0235

0537
.00168

4.79 x 10

4.79 x 10
8.46 x 10
4.77 x 10
2.18 x 10
4.14

= N W Wn W

1.95 x 10

«312

.303
441
.0311
.0568
.00262
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TABLE 2, STANDARD DEVIATIONS OF LONGITUDINAL INSTRUMENT ERRORS

Random Noise Random Biases Random Scale Factors
Full Scale -

Instrument Units Deflection Min Base Max Min Base Max Min Base Max

P?tch attitude gyro deg 30—90 015 .15 45 .015 .15 45 .05% 5% 5%

Pitch rate gyro deg/sec 30—60 .015 10 .30 .015 .10 .30 .05% 5% 5%

Angle-of—attack vane deg 20 .01 .10 10 .010 .10 .10 .05% 5% .5%

Pitot tube ft/sec 1000 .50 1.00 2.50 .50 1.00 2.50 .05% 5% 5%

Forward accelerometer g’s 1 .0005 .005 005  ,0005 .006 005 .05% 5% 5%

Vertical accelerometer g's 25 .0025 .005 025 .0025 .005 025 .05% 5% 5%

Pitch Accelerometer deg/a‘,ec2 30—60 .015 .10 .30 .015 .10 .30 .05% 5% 5%

TABLE 3. STANDARD DEVIATIONS OF PARAMETER ESTIMATES DUE TO
INSTRUMENT ERRORS FOR LONGITUDINAL EQUATIONS OF MOTION
F-4C DC-8
Biases Not Biasesb Biases Not Biases
Estimated Estimated Estimated Estimated

Nominal?® Noise Total Noise Total Nominal® Noise Total Noise Total
Parameter Value Only Errors Only Exrors Value Only Errors Only Errors
Mq -7195°1 182-2¢  704-2 .189-2 .683-2 -7925°1 224.2 .666-2 .231-2 .653-2
Mw -.591d/f-s .359-3 .130-2 .455-3 .495-3 -.498d/f-s .641-3 .322-2 .134-3 .165-2
Mu ~.0295d/f-s .257-2 .353-1 .442-2 .588-2 -.00044/f-s 462-3 582-2 .823-3 .207-2
Mde -16.252 1061 7881 1171 7781 -1.3552 8993 6032 .9323  .611-2
Zw -.16251 914-3  .790-2  .103-2 7172 -.628s"1 1032 .829-2 1242 .709-2
Zu -.0617 51 .345-2 .484-1 .617-2 .153-2 -.251 51 .772-3 1051 127-2 .546-2
Zde —1.24f/d-s2 .167-1 150 .183-1 144 - .178f/d-s2 .143-2 1201 .147-2 .118-1
Xw .0273 s-1 .494-3 .675-2 .769-3 .852-2 0629 5-1 .534-3 .640-2 .880-3 .608-2
Xu .00701 s-1 478-3 .596-2 .116-2 .376-2 -.0291 51 .315-3 421-2 .661-3 .196-2

a Dimensions are: s-sec; d-deg; {-ft.
b Biases of six instruments estimated. Pitot tube bias is not directly estimated.
¢ Deviations are in the form .182-2 which means .182 x 10~
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FIGURE 2. OPTIMAL AND SUBOPTIMAL INPUT FOR
MONTE CARLO SIMULATION
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EFFECTS OF FLIGHT INSTRUMENTATION ERRORS ON THE ESTIMATION OF
ATIRCRAFT STABILITY AND CONTROL DERIVATIVES
Wayne H. Bryant and Ward F. Hodge

NASA Langley Research Center
Hampton, Virginia

SUMMARY

An error analysis program based on an output error estimation method was
used to evaluate the effects of sensor and instrumentation errors on the esti-
mation of aircraft stability and control derivatives. A Monte Carlo analysis
was performed using simulated flight data for a high-performance military air-
craft, a large commercial transport, and a small general aviation aircraft for
typical cruise flight conditions. The effects of varying the input sequence
and combinations of the sensor and instrumentation errors were investigated.
The results indicate that both the parameter accuracy and the corresponding
measurement trajectory fit error can be significantly affected. 0f the error
sources considered, instrumentation lags and control measurement errors were
found to be most significant.

INTRODUCTION

One of the important tasks associated with current efforts to improve the
estimates of stability and control derivatives obtained from flight data is to
evaluate the effects of unmodeled errors in the measurements. The estimated
quantities may be used in a variety of contexts each with its own accuracy
requirements, and the measurement systems and flight maneuvers used may be
specified primarily for other purposes. For these reasons, it is desirable
to be able to evaluate the effect of a given instrumentation set on the accu-
racy of estimated stability and control parameters and, conversely, to synthe-
size an instrumentation set which will permit the aircraft parameters to be
identified to a desired level of accuracy. The purpose of the present study
was to investigate the suitability of presently utilized instrumentation by
establishing the parameter and trajectory fit error statistics for a nominal
instrumentation set and to identify the most significant measurement errors.

The relationship between instrumentation errors and the accuracy of
derivatives estimated from flight data has been reported in references 1 and 2
where the measurement system errors evaluated included random white noise and
static error sources (such as bilas, scale factor errors, misalinement, center-
of-gravity uncertainty, and vane correction). It was determined in that effort
that the static measurement errors can be & much greater source of error then
the white noise. The current effort is based on the approach employed in
reference 1, but differs by including dynemic errors in the measurements of the
states and both static and dynamic errors in the measurement of the control
input. 261



In the following sections, the method used for the analysis is described
and the scope of the study detailed. Results are presented which show the
effect of varying the input sequence and the aircraft type for the three basic
dynamic modes. Finally, the major sources of errors in the estimation of the
derivatives are identified.

METHOD OF ANALYSIS

Error Analysis Algorithm

The process of estimating stability and control derivatives by minimizing
an appropriate quadratic performance function J(p) provides a natural approach
for analyzing the effects of ummodeled errors in the measurement data yp. The
function J(p) is defined as

P
J(p) = ’\i (¥ - yi)T Rt (Vi - ¥y) (1)
i=1

where R-1 is a weighting matrix, ¥i 1s a function of the estimated deriva-
tives, and the product is summed over the number of data points in the measured
trajectory. Referring to figure 1, the dashed curve represents the ideal case
for error-free measurements where the minimum of J(p) is zero and the true
values of the parameters pt would be obtained (assuming no algorithm

or computational errors). For other situations where the measurements contain
error sources which are not estimated or otherwise accounted for in the calcu-
lation of the estimate y(p), the minimum of J(p) will not be zero and the
algorithm will seek values of P which differ from pt as indicated by Ap

in figure 1. The minimum value of J is a measure of the trajectory fit error
caused by the unmodeled errors in Yms» @nd Ap are the corresponding errors

in p. The technique used in reference 1 and continued here is to seek esti-
mates (Ap and § = J($)) of these quantities for simulated flight measurements
developed for various combinations of instrument error sources. While the
modified Newton-Raphson technique employed in references 1 and 2 was used to
obtain these éstimates, the results presented here are applicable to any
algorithm which minimizes the performance function defined in (1). The modi-
fied Newton-Raphson algorithm has the form

32 " d
" J J

= - [ — 2
Apj ap2 5 (2)

and the total parameter estimation error (AD) is obtained by summing the con-
tributions from each iteration until the convergence criteria are met. For
this study, convergence is met when the current change in the estimate (A@j)
is within 1% of the current value of P for each parameter estimated.

A Monte Carlo analysis was performed to obtain the means and standard
deviations of AP and J(P). 1In the majority of error cases, 50 samples of
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simulated flight data were used; however, in a few cases statistics were

formed on as few as 25 samples.
to have a negligible effect on the results obtained.

The smaller number of samples was determined
Consequently, no dis-

tinction is made between data as to the number of samples used.

Aircraft Equations

The equations of motion used to represent the aircraft dynamics in the
present study are:

P 0 1 o o [ae] [o ]
Ja's| _ 0 Mq MW Mu Nq N MSe [Aail 3)
AW -g sin 8, Vcosay Z_ Z, Aw Zeo| L ©
fﬁl [fg cos eo -V sin %y Xw th g&{ U) ]
for the longitudinal mode and
Eﬁ- &b sin @y - COS a, g cOS GO/V'1 lﬁ— FYS& YBr ]
&l L*B L*p . 0 | e Tarl [Poa ”
P I O O 0 Ar U W N
B P r da Sr r
LA{Z{ 0 1 tan 8 _ LA¢_ © o |

for the lateral directional mode. The short-period equations are obtained
from (3) by eliminating the state Au and all its factors. The unknown
parameters estimated in the longitudinal mode are s> My My Mses Zsesr Zywy
Zy, Xy, and Xy. In the short-periocd mode, Mg, Mw& ws Mse, and Zge are
estimated and in the lateral mode Ypg, Yga, Ysrs L7g, L* *

L X N
’ da» or» B>
Np, N Ngyp, and ¥, are estimated. Aircraft consiger

P ’ 5 ed in the study were
the DC—g, the F4-C, and Cessna 172. This selection permits the evaluation of

a high-performance aircraft, a large transport, and a small general-aviation

aircraft. Derivative values for the DC-8 and FL-C were obtained from refer-
ence 2 and for the C-172 from reference 3.

Measurement Equations

The ideal measurement equations are represented as

y = H(p) x + D(p) u (5)
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The simulated longitudinal measurements are:

pitch attitude (9)

pitch rate (q)

angle of attack (a)
longitudinal velocity (u)
longitudinal acceleration (Ny)
normal acceleration (N,)
pitch acceleration (q)

NN N AN~
~N O\\J W
N e’ o N e e S’

In the short-period mode, longitudinal velocity and acceleration are not used.
In the lateral mode, the simulated measurements are:

angle of sideslip ()
roll rate (p)

vaw rate (r)

roll attitude (@)

lateral acceleration (N,,)
roll acceleration (p)
yaw acceleration (r)

ITNITN N TN SN TN
~N O\ £ W
N N e e S e

These measurements are corrupted by errors in the following order:

vy =Ty +b (6)

where T 1is a matrix of scale factor, cross-coupling, and misalinement errors,
and b represents measurement biases. Details concerning the structure of the
T matrix are contained in reference 1. State measurement lags are modeled as

iy = By (g - ) (7)

vhere Ty 1is a diagonal matrix of measurement time constants. The simulated
flight data measurements are then obtained by adding white noise

Vg = ¥ * VW (8)

In a similar fashion, control surface position measurement errors are
modeled as

up = T ou o+ b (9)

where T, is a matrix of scale factor errors, and be are measurement biases.
Control measurement lags are included as

(10)

with F. a diagonal matrix of measurement system time constants. The simulated
control measurement is obtained by adding white noise as
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wo o= up + v, (11)

and is used in the development of the estimated state measurements.

Table I lists the nominal values used in the measurement error models.
All values except measurement time constants were obtained from reference 1.
The measurement time constants were obtained from reference 4 and are indica-
tive of the magnitudes when onboard filtering is desired. Those members of
the table given as random errors are used for measurement errors which are
assumed to be constant for a particular flight test (one Monte Carlo pass in
this analysis), but which vary from flight test to flight test, or for differ-
ent measurement systems. The investigation was carried out for the five meas-
urement error configurations listed in Table II. This grouping of error
sources allows the effects of the individual error types to be assessed.

RESULTS AND ANALYSIS

Derivative Estimation Errors for the FL-C

Two control input maneuvers were used in the following investigation.
Input sequence 1 was a 15-second trajectory resulting in the motions illus-
trated in figures 2(a) and 2(b), and was used as a standard for each of the
three aircraft so the effects of aircraft type could be observed. Input
sequence 2 was a 1lO-second trajectory producing the motions shown in
figures 2(c) and 2(d).

Figure 3 shows the percentage change in each of the stability and control
derivatives from the nominal or true value for the F4-C obtained using input
sequence 1. This information is plotted for the five error configurations
listed in Table IT for the full longitudinal (fig. 3(a)), the short-period
approximation (fig. 3(b)), and the lateral-directional set of equations
(fig. 3(c)). For convenience, a hatched bar is used to denote the mean value
of the plotted quantity and a solid bar its standard deviation (lc) as indi-
cated on the figures. This convention is used throughout the paper.

The comparison of Cases 1 and 2 (standard deviation) indicates that the
derivatives are sensitive to the control measurement errors while the compari-
son of Cases 2 and 4 (means) indicates that the derivatives are also generally
sensitive to lags. As an illustration, the error in the derivative M, for
Case O (fig. 3(a)) is very small (0.02%) while the standard deviation is some-
what larger (0.08%), which is expected since the white noise is random with
zero mean. Case 1 adds state measurement static errors, modeled primarily as
random errors, which increase the standard deviation of the error in M, while
the mean value remains nearly the same as Case 0. Addition of static comtrol
measurement errors results in a further increase in the standard deviation of
the My estimation error (2.2%) while the mean error is still very small
(0.13%). These results show static errors in the control measurements to be
relatively large sources of error for this particular derivative, while center-
of-gravity uncertainty, misalinement and misplacement of sensors, scale factors,
and measurement biases do not appreciably affect the estimation accuracy.
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In Case 3 dynamic errors are added to Case 1 and the mean error in the
estimation of My approaches the magnitude of the random error, although the
magnitude of each is only about 0.24%. Thus state measurement lags cause no
particular problem in estimating this derivative. When control measurement
lags are also added to obtain the most general measurement error model con-
sidered (Case 4), the mean value of the estimation error again approaches the
standard deviation (3.8%), indicating the static and dynamic control measure-
ment errors have about the same effect.

While the accuracy required depends on the specific application, the mag-
nitudes of the errors observed indicate that extra care may be required in the
design and installation of the measurement system. For example, the mean
errors in the estimation of for Cases 2, 3, and 4 are 2.8%, 26.6%, and
23.8%, respectively, while the standard deviations are 9.8%, 0.93%, and 10.2%.
Additional cases can be pointed out in the short-period mode (fig. 3(v)) and in
the lateral mode (fig. 3(c)). Caution should be exercised in drawing conclu-
sions about the weak derivatives such as My> Xys Ysq, and Yspe The effect of
measurement system errors is large in terms of percentage of the true value
even for the noise only case (Case 0). However, the actual effect of these
errors on the trajectory is very small. The large values are indicative of
the difficulty in estimating these derivatives.

Figure 4 shows the ratio of the fit error statistics for easclh measurement

error configuration relative to those for white noises only (Casze 0). 1In
general, for a fixed number of data points, the fit error statistics increase
as more error sources are added and are largest for Case 4. These recsults

indicate the difficulty in matching flight measurements when control reasure-
ments are present.

Effects of Control Input Sequence

Figure 5 gives the ratio of the parameter estimation error with input
sequence 2 to the error with input sequence 1 for the FL-C and shows the effect
of input sequence on the magnitude of the derivative estimation error as a
function of measurement error combination. In the full longitudinal mode
(fig. 5(a)), the derivatives associated with the phuzoid mctior are quite
sensitive to the reduced data sequence. This increased sensitivity to measure-
ment errors is a consequence of having insufficient information upon which the
algorithm bases its estimates of the phugoid derivatives. Since figure 3(a)
also shows large errors in the phugoid derivatives for input sequence 1, only
the short-period approximation will be used to represent longitudinal moticn
for the remainder of this paper.

Figure 5(b) shows the effect of the change in input control sequence for
the short-period mode. In general, the ratios cluster around unity indicating
no definite advantage for either sequence. 1In several cases, the ratios differ
significantly from unity but the total error is still a small percentage of pg.

The largest changes are the mean error in M, for Case 3 which drops from
26.4% for input sequence 1 to 18.9% for input sequence 2 as shown by the ratio
of 0.72 on figure 5(b) for this derivative. Furthermore, the variance in the
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error of decreases from 11.8% for input sequence 1 to 8.2% for input
sequence 2 in Case 4, shown by the ratio of 0.70 on figure 5(b). Figure 5(c)
shows similar results for the lateral-directional mode.

Comparison of the Effects of Measurement System
Errors for Different Classes of Aircraft

Although this study was based primarily on the Fi-C, a comparison was
made to determine the effect of instrumentation errors on a general aviation
and a large transport aircraft. To represent the light aircraft, the
Cessna 172 was used, and for the large transport, the McDonnell Douglas DC-8.
Results using input sequence 1 were obtained for each aircraft for both the
short-period and lateral-directional modes. The same five measurement system
error configurations were also used so that ratios of the corresponding param-
eter estimation error statistics for the DC-8 and the C-172 to those previously
obtained for FL-C could be formed. Figure 6(a) shows the ratio of the param-
eter estimation error statistics for the DC-8 to those for the F4-C in the
short-period mode and figure 6(b) shows this ratio for the C-172 and the F-L4C.
Figures 6(c) and (d) show similar ratios for the lateral mode. For a few
derivatives, the true value for either the DC-8 or C-172 is zero so that the
parameter uncertainty ratio was not formed.

In the short-period mode the parameter uncertainty ratios for the DC-8
and the C-172 (figs. 6(a) and 6(b)) indicate that order of magnitude changes
can occur in the parameter uncertainties for the different aircraft. These
ratios may represent a very small total error for some of the derivatives,
however. For Case 0, the largest change observed in the mean was from 0.03%
to 0.27% (Z, for the C-172), and in the standard deviation from 0.07% to
1.36% (M, for the C-172). The parameter Z, for Case 2 has a ratio of 218
(mean error) for the C-172, representing an increase in uncertainty for this
derivative from 0.02% for the FL-C to 5% for the C-172.

For several parameters significant changes exist in the estimation
uncertainty, especially for Cases 3 and 4. TFor example, the mean for the
C-172/FL4-C for Case L4 represents a decrease from 21% to L% for the C-172. 1In
the lateral mode, the mean error in L* for Case 3 increases from 1% for the
F4-C to 23.5% for the C-172. Other similar cases can be observed.

Determination of the Dominant Error Sources

A potentially valuable use of this error analysis is the determination of
the dominant error source. To achieve this end, the error cases for which the
largest parameter estimation errors existed where singled out for examination.
For both the short-period and lateral-directional modes, these were Case 2
(which adds static control measurement errors) and Case 3 (which adds state
measurement lags). To determine dominant state measurement lags, the lags
were considered in groups according to type of instrument and the resultant
parameter estimation errors were assessed., Lags were considered first in the
gyroscope measurements, then in the angle-of-attack vane measurements, and
finally in the acceleration measurements.
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In the short-period mode, acceleration measurement lags were responsible
for very nearly all the additional parameter uncertainty due to all lags. To
determine the relative effects of lags within the acceleration measurement,
lags were introduced in the linear acceleration measurement (N,) and the
angular acceleration measurement (q) independently. The results indicate the
angular acceleration measurement lags are responsible for the majority of
parameter estimation uncertainty. To check this result, the total fit error
statistics for each measurement error configuration was resolved into compo-
nents corresponding to each measurement. These components are plotted in
figure 7, where the values assigned to the individual fit errors are the per-
centage of total fit error for that error case. For the short-period mode
and error Case 3, it is apparent that the pitch acceleration measurement is
the primary contributor since the individual fit error is nearly 82% of the
total. The linear acceleration measurement accounts for most of the remaining
fit error.

A similar analysis was performed on the control measurement errors.
Results indicate the white noise alone accounts for nearly 60% of the total
parameter uncertainty, while control measurement biases are responsible for
approximately 40%. Addition of the scale factor errors resulted in no signifi-
cant change in the parameter estimation uncertainty. For this measurement
error configuration, the white noise and biases on the control measurements
each are capable of producing significant errors in the estimation of the
derivatives.

Figure 7(a) also shows the effect of static control measurement errors on
the individual measurement fit errors. From the figure it can be seen that
the majority of the total error comes from the acceleration measurements. The
specific mechanism through which the control measurement errors affect the
acceleration measurements is given by the measurement equations.

Results similar to the short-period mode have been obtained for the
lateral mode. For Case 3, lags in the acceleration measurements cause the
majority of parameter estimation uncertainty. However, lags in the linear
acceleration measurement are the primary source of estimation uncertainty.
Figure 7(b) for Case 3 corroborates this result with the fit error attributed
to Ny being 55% of the total and for D, 27% of the total fit error.

CONCLUSIONS

The results from a Monte Carlo analysis of the effects of unmodeled meas-
urement system errors on the estimation of stability and control derivatives
indicate the following conclusions:

1., Static and dynamic control input measurement errors and dynamic state
measurement errors can cause parameter estimation and trajectory fit errors
which may require extra care in the design and calibration of the measurement
gystem.



2. The dominant source of error in the state measurements is accelera-
tion lags. Of these, the pitch acceleration measurement for the short-period
mode causes the majority of parameter uncertainty. For the lateral mode,
lags in the measurement result in most of the uncertainty with lags in
the roll acceleration measurement being responsible for about half as much
error as Ny.

3. For comparable conditions, the measurement error sources appear to
affect the three classes of aircraft considered generally in the same manner.
However, for some parameters significant changes in the estimation accuracy
exist.
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TABLE II. MEASUREMENT ERROR CONFIGURATIONS USED IN THE ANALYSIS
State measurement Control measurement

Error

configuration White Static Dynamic White Static Dynemic
nolise errors errors noise errors errors

Case O v

Case 1 v v

Case 2 v v v Vv

Case 3 v v v

Case 4 v v v v v v
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PARAMETER IDENTIFIABILITY OF LINEAR

DYNAMICAL SYSTEMS

Keith Glover Jan C. Willems
Decision and Control Sciences Group Mathematisch Instituut
Department of Electrical Engineering Rijksuniversiteit Groningen
Massachusetts Institute of Technology Groningen
Cambridge, Massachusetts 02139 The Netherlands
SUMMARY

It is assumed that the system matrices of a stationary linear
dynamical system have been parametrized by a set of unknown parameters.
The question considered here is, when can such a set of unknown parameters
be identified from the observed data? Conditions for the local identifia-
bility of a parametrization are derived in three situations: (i) when
input/output observations are made, (ii) when there exists an unknown
feedback matrix in the system and (iii) when the system is assumed to be
driven by white noise and only output observations are made. Also a suf-
ficient condition for global identifiability is derived for case (i).

1. INTRODUCTION

In this paper we will consider the identification of systems described
by the linear differential or difference equations:

dx

dt(t) = Ax(t) + Bu(t) or x(k+1l) = Ax(k) + Bu(k)

y(t) = Cx(t) + Du(t) y(k) = Cx(k) + Du(k)
where xeR"; uerR™, yerP, aerR™®, BerR™™, cer P*7,

In practical identification problems such equations may often be
postulated on the basis of a priori knowledge on the structure and physics
of the system, with the elements of the matrices A, B, C and D, either
zero, known physical constants, or certain known functions of unknown
parameters. Thus, if the unknown parameters are denoted ach:Rq, then
the system matrices may be written as A(a), B(a), C(a), and D(a), where

A: R4 > RP¥N g, g9+ R™M . g2 > RPXM 5pq p: RY > RPXM

Research supported by NASA under Contract No. NGL-22-009-124 with the
Electronics Systems Laboratory of the Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139 U.S.A.
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A natural question which arises in the context of such identification
problems is whether or not these unknown parameters (A, B, C, D) (&), can
be identified from observations of the system?

When such a model can be formulated it has two main advantages over
using canonical forms (as given for example in references 1, 2, and 3).
Firstly the parameters being identified have a physical interpretation and
secondly for multiple input/multiple output systems, the canonical forms
have the disadvantage that a set of integers (e.g. the Kronecker indices)
must be determined before the real valued parameters can be identified.

Three situations will be considered here. In section 2 both input
and output observations are assumed to be available and the effect of
a feedback matrix is also considered. 1In section 3, the system is assumed
to be driven by white noise and only the outputs are cbserved.

2. IDENTIFIABILITY FROM INPUT/OUTPUT OBSERVATION

In this section it will be assumed that both the input and the output
of a linear time invariant system are observed and that the input is per-
sistently exciting (as defined for example in reference 4). That is, there
are sufficient assumptions so that the transfer function of the system
can be identified from input and output observations. Consider now the
following definition:

Definition 1:

Let (A, B, C, D) (a):NCkY > gi(ntmip) + mp be a parametrization
of the system matrices (A, B, C, D). This parametrization is said to be
Locakly identifiable at BeQ if there exists an £>0 such that

(1) ||a-8]| <€, |I8-8]] < €; a,8 €2 ana
(i1) C(a) (Is-A(B)) IB(0) + D(a)= C(B) (Is-a(B))~1B(R) + D(B)
for all s € C (= complex plane). imply o==8
In other words, in the neighborhood of &, there are no two systems
with distinct parameters which will have the same transfer function. This

definition is similar to the definition of "non-degeneracy'"as given in
reference 5.

The following theorem gives a sufficient condition for local
identifiability as defined above:
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Theorem 1

Let (A, B, C, D) (a):QCRY » Rn(n+m+p)+mp (with Q an open set in RY)
be a C' ({i.e., continuously differentiable on Q) parametrization of the
system matnices (A, B, ¢, D) and Let (A, B, ¢, D) (&) be minimak.

Then (A, B, C, D) (a) 48 Locatly /égen,téﬁiab!,e at 6_4if and only 4§ there
exists an € > 0 duch that (TA()T Y, TB(®), c(a)T™t, D(a)) # (A, B, C, D) (B)
forn alf  TeGL(n)={T|det T # O}and a,BeN (&) = {a| [|a-8|| <€ }.

A sufficient condition forn this 4is that det (X'X) # 0 where
I® A ()-AQ) ® I : ) (305 (&)

I @ B' () ' E)
* s - c(8) I i m= :
@ ) 3., . (8)
| 23

0 o0

acij (c’i)

Ba

adij ()]
da,

- 7

The indices of M are Auch that the efements of A, B, C and D anre Listed
by nows. (see Proof).

X denotes Kronecker product.
Proof:

The necessary and sufficient condition follows immediately from the
facts that minimal systems form an open set in parameter space, and that
any two equivalent minimal systems are related by a similarity transformation,
(A, B, C, D) = (TAT_l, TB, CT'l, D), (see reference 6).

A complete proof of the sufficient condition will appear in reference
7. The method of proof is as follows:

Let F: GL(n) x 2 x Q ~» Rn(n+m+p)+mp be defined as

1 _ a@®), TB(@) - B(R), C(MT L - c(B), D(o) - D(B))

F(T,0 ,B ) = (TA(®) T
It is then shown that X is the Jacobian of F evaluated at (I,8, & ) which,
by the implicit function theorem, implies that F(T, ¢, B)=0 has a unique
solution for (T, 0) as a function of B in a neighborhood of (I, &, & ).
The result then follows by extending the neighborhood of I to all of GL(n).
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Theorem 1 gives a straightforward test for local identifiability
which is significantly simpler to apply than methods based on the so-called
Angormation matrix.

Identification in the presence of unknown feedback can cause practical

difficulties and Corollary 1 gives conditions for identifiability with
feedback.

Corollary 1
Considen the Linearn feedback system,

dx -
Ef(t) = A(0) x (t) + B(a) u(t)
y(t) = C(a) x(t) , u(t) = -Kx(t) + v(t) , K ¢ R"XD
where (A, B, C) (a) 44 a C' parametrization. Then the parameter o and

the feedback matrix K are Locally Ldentifiable at o = & and x = R 4nrom
observations of u(t) and y(t) i det [ X~ X 1 # 0.

where .
1 @ -3 @ 1, VB @ I
X = I @ 8 oMo 0
2 ® 1 ; \ 0
whehe
A=n0) -8B R, B8=8(A), C¢=c@and Mis defined in Theorem 1.
Proof

The above theorem is a consequence of Theorem 1 since in this situation
the reedback matrix simply induces a new parametrization of the system
matrix defined by A(a, K) = A(a) -B(0)K.

Generalization to situations where the feedback matrix is partly
known or where it is not required to be identified can be obtained.
Disadvantages of the concept of local identifiability are that the nominal
values, G, must be known and the size of the neighborhood of G is in
general not easily found. However, if a parametrization is locally iden-
tifiable for all aef, then one may conclude that identification algorithms
will be locally well-behaved but may converge to one of several solutions
depending on the initial estimates and on the actual data received. Tt
is thus desirable to attempt to generalize the result of the theorem to
global identifiability.
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Definition 2

Let (A, B, C, D) (0):RC RY » Rn(n+m+p)+mp be a parametrization of

the system matrices (A, B, C, D). This parametrization is said to be

globally Aidentifiable if

(1) C(o) (Is-A(a)) 1B(@) + D(@) = C(B) (Is-A(B)) 'B(B) +D(B)
for all se(C

and

(ii) (A, B, C, D) (a) is minimal.
imply that o = B.
Condition (ii) could be deleted in the above definition but then the
definition would be very restrictive since most useful parametrizations
admit multiple representations of non-minimal systems.

The following proposition gives a sufficient condition for global
identifiability, when the parametrization is affine, (i.e., a linear
map plus an offset).

Proposition 1l:

An affine parametrization (a, B, C, D) (o): QCRY > g (ntm+p) +mp

i globatly Aidentifiable if det [Y' (o, B)Y(a BY1 # 0 fon aZﬂ a,BeQ, where

rz(a,B) 0 M
Y(a,B) ={ O z(B,) -M
1 ® a'() - A(B) @ T
z(a,B) = I ® B'(w
-C(B) @ 1
! 0

and M is c¢iven in Theorem 1.

Proof:

Since we are only concerned with minimal systems global identifiability

is implied if the equations TA(a) = A(B)T, TB(a) = B(B), C(a) = C(B)T,
D(a) = D(B), have a unigue solution for all o,Be and TeEGL(n). Let g, and
g, be the vectors formed by listing respectively the elements of (T- I} and
1o ~I) by rows. Then it is easily verified that the above equations are
equivalent to [q;, 93, o-BlY'(a,B) = O, since (A, B, C, D) (a) is affine.
Therefore since det (Y'(a,B)Y(0,B)) # O the nullspace of Y(a,R) =
N(Y(c,B)) = {0} and the result is thus verified.
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Remarks:

1. The conditiog is not necessary singe (al,az,a—é)eN (v(8,B)) does not
imply that (I+Qq) -1 +Q5, a=0, and R=R, which is required for a system
not to be globally identifiable.

2. A somewhat more restrictive sufficient condition for global identifia-
bility is that N(2(a,B),M) ={0} for all a,Befl. We remark that this
condition is in fact satisfied by the canonical forms given in references

1 and 3.

3. Note the similarity between the condition in Remark 2 and the
condition or Theorem 1. However local identifiability for all aef) does

not in general imply global ident%f%ib}lity. An open conjecture is that
local identifiability for all OeR p implies global identifiability when
the parametrization is affine, and D = 0.

3. IDENTIFIABILITY FROM OUTPUT OBSERVATION

In this section we will consider the identifiability of a continuous
time linear stationary system under the following assumptions.

Al. The input u(t) is not observed directly, but is assumed to be a white
noise process with E(u(t)u'(T)) = IS (t-T).

A2. The matrix A is asymptotically stable, (i.e., the eigenvalues of A
are strictly in the left half plane).

A3. The system has reached steady state when the observations begin
(i.e., the output process y(t) is a stationary process).

A4. The system to be identified is globally minimal, i.e., tre dimension
of the state is less than or equal to that of any other system having
the same output spectral density when driven by white noise (see reference 8).

Under these assumptions the most information that may be obtained
from the output observations is EEe output spectral density, ¢(s) =
G(s)G'(-s), where G(s) = C(Is-A) "B +D. This motivates the following
definition.

Definition 3

Let (A, B, C, D) (a):QC:Rq -> Rp(n+m+p)+mp be a parametrization of the

system matrices (A, B, C, D). This parametrization is said to be Locally
didentifiable from its output spectral density at Be if there exists an
€ > 0 such that
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(1) |lo-8|| < e,||B-8]| < €;a Beq.
and
(ii) G&(s,a) G' (-s,0) = G(s,B)G'(-s,B) for all seCC.
imply a=8.
where G(s,0) = C(0) (Is-A(a)) 1B(a) +D(0)

A condition for local identifiability in this sense can be obtained
via the characterization of all globally minimal solutions to the spectral
factorization problem given in the following lemma.

Lemma 1

Let (A, B, C, D) and (F, G, H, J) be the system matrices of two
globally minimal continuous time systems satisfying conditions (Al) and
(A2). Then these systems have the same output spectral density function
if and only if there exist matrices TeGL(n) and P=P' such that

TaT ! = F, CT = H, AP + PA' = BB' - TGG'T'

pc' = BD' - TGJ', DD' = JJ°'.
The proof of Lemma 1 is a straightforward consequence of Lemma 2 in
reference 8.

The local identifiability problem considered in this section thus reduces
to verifying whether or not the following equations have the unique
solution o =R, T=I, P=0, for all a,BeNe(&).

P="P', TA(MT L = A(R), C()T = C(B),
A(a)P + PA'(0) = B(a)B'(a)-TB(B)B' (B)T',
PC'(a) = B(a)D'(a) - TB(B)D'(B),
D(a) D' (a) = D(B)D'(B).
The following theorem can be proved in an analogous manner to the proof

of Theorem 1, using the implicit function theorem to show that (B,T,P) is
a unigue function of a.

Theorem 2

Let (A, B, G D) (o) :QCRE + FFOFRIME (i) Q an open set in
’R3) be a C' parametrization of the system matrices (A, B, C, D) of a continu-
ous time system satisfying (Al)-(Ad). Then this parametrization 14 Locally
identifiable f§rom its output spectral density at 8eQ, 4if the following
Linean equations in (88,6p,8T,8P,88), have a unique sofution (L.e. zeno).

287



(i) 6p = &p'
(ii)  (ASP+STBB'+SBB') + (ASP+STBB'+SBB')' = 0O

(iii) 8PC' = (STBD' + SBD' + BED')

(iv) Bép'+ SpD' = O
R . . Ja, . N db. . .
(v)  (AST-8TA,SB,C8T,SD) = T;J- (&) 88}, —a—;lm)@s ,

8ci. . Bdi, R
_551 (a)sB} , —551 (o) 6B

where (A, B, C, D) = (a, B, ¢, D) (B).

We remark that the condition of Theorem 2 may be restated as a non-zero
determinant condition for a matrix of dimension less than or egual to

% (3n+2m+1) + mp . Analagous results can be derived for the discrete time

situation.
4. CONCLUSIONS

In this paper we have presented some tests for the identifiability of
parametrizations of stationary linear dynamical systems. These conditions
should be of great value in situations where sufficient a priori knowledge
is available so that state space equations can be written down with rela-
tively few unknown parameters (i.e., <n(m+p) +mp) .

An open problem, presently under investigation, is that of finding
weaker sufficient conditions for global identifiability.
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A NEW CRITERION FOR MODELING SYSTEMS
By Lawrence W. Taylor, Jr.

NASA Langley Research Center
Hampton, Virginia

SUMMARY

Tt has long been recognized that models of systems based on a set of
data do not always adequately predict the system response. It is known that
the measured response can be matched more closely with more adjustable model
parameters, but also that there is a 1limit to the number of parameters which
if exceeded produce a model which is poorer at predicting the system response
than if a simpler model was used. The analyst has not had at his disposal
a definitive means of knowing how complex the model should be, short of
dividing the data in two parts - one for parameter selection and the other
for testing.

The criterion that is proposed is an expected value of the mean-square
response error as an alternative to testing a model against new data. Model-
ing with respect to this new criterion does not change the estimate for a
given model format from s maximum likelihood estimate or mean-square responce
error estimate. The new criterion does, however, provide a means of comparing
models with different formats and varying complexity.

A numerical example is used to illustrate the application of the proposed
criteria and the problem of searching for the "best" model. For all but the
most trivial system identification problems, it is shown that a prohibitive
number of combinations of terms of the model must be investigated to ensure
the final model is best. Although the computations can be greatly reduced,
the problem of efficiently searching for the best candidate model remains to
be worthy of attention.

INTRODUCTION

The problem of modeling systems continues to recelve conslderable atten-
tion because of its importance and because of the difficulties involved. A
wealth of information has accumulated in the technical literature on the
subject of systems identification and parameter estimation; references 1
through 5 are offered as summaries. The problem that has received most atten-
tion is one in which the form of the system dynamics is known, input and noisy
output data are available, and only the values of the unknown model parameters
are sought which optimize a likelihood function or the mean=square response
error. It would seem with the variety of estimates, the algorithms, the
error bounds, and the convergence proofs, and the numerical examples that
exist for these systems identification problems, that any difficulties in
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obtaining accurate estimates of the unknown parameter values should be a thing
of the past. Unfortunately, difficulties continue to confront the analyst.
Perhaps the most important reason for difficulties in modeling systems is
that we do not know the form of the system dynamics. Consequently, the
analyst must try a number of candidate forms and obtain estimates for each.
He is then confronted with the problem of choosing one of them with little

or no basis on which to base his selection. It is tempting to use a model
with many parameters since it will fit the measured response error best.
Unfortunately, it is often the case that a simpler model would be better for
predicting the system's response because the fewer number of unknown param-
eters could be estimated with greater accuracy. It is this problem of the
analyst that this paper addresses and offers a criterion which can be used to
select the best candidate model. Specifically, a numerical example will be
used to illustrate the notions expressed in references 4, 6, and 7.

SYMBOLS

Program variables are given in a separate section.

A systems matrix (MX by MX)

B control matrix (MX by MU)

c parameter vector (MC by 1)

o a priori parameter vector (MC by 1)

¢ estimate of parameter vector (MC by 1)
Dl weighting matrix for measured response
Do welghting matrix for a priori estimate vector
E{} expected value

F state transformation matrix (MZ by MX)

G control transformation matrix (MZ by MU)
h time increment

I identity matrix

i,k time and iteration indices, respectively
J cost function to be minimized

N number of time points

P() probability density function
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P roll rate

r yaw rate

T record length, sec; as superscript, transpose

t time, sec

u control vector

X state. vector

X time derivative of state vector

Yy calculated response vector

z measured response vector used to determine the model parameters
zl measured response vector independent of z

B sideslip angle

Bg, alleron deflection

.. rudder deflection

¢ bank angle

Vc() first variation (gradient) with respect to parameter vector
VCQ() second variation (gradient) with respect to parameter vector

Dots over symbols denote derivatives with respect to time.

The program variables used in the definitions of the symbols are as
follows:

MC number of unknown parameters
MU number of control variables
MX number of state variables

MZ number of response variables

SYSTEMS IDENTIFICATION WITH MODEL FORMAT KNOWN
The systems identification problem of determining the parameters of a

linear, constant-coefficient model will be considered for several types of
estimates. It will be shown that maximum-likelihood estimates can be identical
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to those which minimize the mean-square response error. The subject algorithm,
therefore, can be used to obtain a variety of similar estimates. Attention

is also given to the calculation of the gradient that is involved in the
algorithm and to the Cramer-Rao bound which indicates the variance of the
estimates.

Problem Statement

The problem considered is that of determining the values of certain
model parameters which are best with regard to a particular criterion, if
the input and noisy measurements of the response of a linear, constant-
coefficient system are given. The system to be identified is defined by the
following equations:

x = Ax + Bu (1)
y=Fx+Fu+b (2)

Z=y+n (3)

where

b'4 state vector

u control vector

y calculated response variable

b constant-bias vector

n noise vector

Z measured response variable

The unknown parameters will form a vector c¢. The matrices A, B, F, and G
and the vectors b and x(0) are functions of ec.

Minimum Response Error Estimate
One criterion that is often used in systems identification is the mean-
square difference between the measured response and that given by the model.

A cost function which is proportional to the mean-square error can be written
as

(zy - yi)TDl(zi - yi) (L)

o
1=

|
1
=
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where: D1 is a weighting matrix and 1 1s a time index. The summation
approximates a time integral. The estimate of ¢ 1s then

= ARG M:gN(J) (5)

where ARG MIN means that vector c¢ which minimizes the cost function J.

Linearize the calculated response y with respect to the unknown param-
eter vector c¢

¥i = ¥i, + chi(c - co) (6)
where
yiO nominal response calculated by using cq
V¥4 gradient of y with respect to c
o nominal ¢ vector

Substituting y; dinto the expression for J and solving for the value
of ¢ which minimizes J yields

-1

N N
z (chi)TDlvcyi y (chi)TDl(Zi - ¥ig) (7)
i=1

i=1

If this relationship is applied iteratively to update the calculated
nominal response and its gradient with respect to the unknown parameter
vector, the minimum-response error estimate ¢ will result. The method has
been called quasi-linearization and modified Newton-Raphson. The latter
seems more appropriate since the Newton-Rephson (ref. 1) method would give

-1
sy = Ot [:\7 J] [v J] (8)

where

N

T

VI = =2 Z (Veyyy ) Dy (24 - yik) (9)

i=1

N N

2 T 2 T '
i=1 i=1
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The second term of VEEJk diminishes as the response error (zi - yik)

diminishes. The modified Newton-Raphson method is identical to quasi-
linearization if the term is neglected.

Maximum Conditional Likelihood Estimate

Another criterion that is often used is to select ¢ +to maximize the
likelihood of the measured response when c¢ is given

¢ = ARG MAX{P(z|c)} (11)
If the noise n has a Guassian distribution with zero mean, the prob-

ability distribution of the measured response at any single time point can be
written as

-1
P(Zilc) = = eXP[' ‘;f (Zi = yi)TMl (Zi - Yi):] (12)
(2“)(MZ)/glMlll/2

where My = E {nnT} and MZ is the number of elements in the response vector.

If the values of n are uncorrelated at different time samples, the
conditional probability (given the value of ¢) of the entire set of measured
response 2z can be written as

P(z|e) = = exp| -

(gﬁ)N(MZ)/QlMl,N/Q

N

N -
ZE: (g - y))™ (24 - y,) (13)
i=1

The maximum conditional likelihood estimate of the unknown parameters
will be the set of values of c which maximize P(zlc), if it is recognized
that y 1is a function of e¢. If it is noted that the maximization of
P(z|c) occurs for the value of o which minimizes the exponent, the maximum
conditional likelihood estimate is the same as that which minimizes Ehe mean-
square response error provided the weighting matrix D1 equals M

Maximum Unconditional Likelihood (Bayesian) Estimate

The unconditional probabllity density function of z can be expressed
as

P(z) = P(z]|c)P(c) (14)

The probability of ¢ relates to the a priori information available for
¢ Dbefore use is made of the measurements z. If P(ec) is Gaussian
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] 1 I B A
e (o) ¥0)/2 |1/ p[e(c ol e °Oﬂ )
2

where

i

M, E(_(c - ¢o)(e - cO)T>
E {c}

€o

The unconditional probability of =z is then

N
-1
P(z) = = exp| - = (zg - yi)TM (z; - )
(2“)[(MC)+N(MZ)]/2,M1|N/2,M2|1/2 2 ;Zi L
-1
- % (¢ - cO)TM2 (e - ¢p) (16)

Ag :in, the expression is maximized by minimizing the exponent. Setting
the gradient with respect to c¢ equal to zero and solving yields

N -1 N
8 =8 + (V.y. )M 'lv VI (v Ty )M 'l( )
“k+1 T %k vip/ M1 VeVi T c Yig/ My (23 - Vig
i=1 i=1
-m,HE, - en) (17)
2 k 0

An identical estimate would have resulted if a weighted sum of mean-
square response error and the mean-square difference of ¢ and its a priori
value are minimized, provided the weighting matrices used equaled the appro-
priate inverse error covariance matrices. Consequently, the same algorithm
can be used for both estimates

N
-1 -1
¢ = ARG M% j{: (Zi - yi)TMl (23 - y3) + (e - cO)TM2 (c - cg) (18)

i=1

Variance of the Estimates

A very important aspect of systems identification is the quality of the
estimates. Since the estimates themselves can be considered to be random
numbers, it is useful to consider their variance, or specifically their error
covariance matrix. The Cramer-Rao bound (ref. 1) provides an estimate of the
error covariance matrix and is identical to that developed in the following
discussion.
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Note that when the maximum unconditional likelihood estimate of ¢
converges, 1t is necessary for the following equation to be satisfied:

N
T -1 -1/

Z Ve¥i M (zg - yg) - M, (2 - eg) = 0

1=1

If ctrye 15 introduced, and y; 1is linearized with respect to c, it
follows that

N

-1
T A
Z VoY1 M (Zi - yitme - Veyy(2 - ctrue)>
i=1

-1~
- M, (€ - ctrye) - M,

After solving for ¢ - Ctrue

o>
]
o
i
DI
=
[>J=
N
<
- H
=
[
1
—
B
[
N
t
’\;gl
=
—~
¢
]
®
1
0
(@]
e

true

where

ltrue

Squaring and taking the expected value yields

N
-1
E:{}8"ctrue)(8"ctrue)€} - Q7 };(V%yi)TMl E{%l(ctrue"co)%}MQ-l Q—l

1=1
N N 1

*e Z Z(chi)TMl E’E‘inﬂMl-lvch <t
1=1 =1

+ Q-le-lE{Ectrue - cO)(ctrue - co)%}Mz—lQ—l
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Since

E{l Ctrue ~ CO)U} =0
{i j} =0 (1 #J)

[t}
=
[
~—~
f
[
[V
Sa”

and

A A L -1] -1 -1
E{c—ctme)(c—ctm } Z (v M Vyi+M2 Q- =Q

which is the inverse that is required in obtaining the maximum uncondltlonal
likelihood estimate of c¢. If the a priori information is not used, M2
will be the null matrix so that

N
T T -
E{Ec - ctrue)(c - ctrue):} = }: (V%yi) M lvcyl
1=1

The resulting estimate of the parameter error covariance matrix is useful
in assessing the quality of the estimated parameter values.

-1

Importance of Testing Results

The importance of testing a model once estimates of the unknown param~
eters have been made, cannot be over emphasized. The test can be to predict
response measurements not included as part of the data used in obtaining the
model parameters. If the fit error, J, is greater for this test than for a
similar test using a model with fewer unknown parameters, it would indicate
that the data base is insufficient for the more complicated model. The
testing should be repeated and the number of model parameters reduced until
the fit error for the test is greater for a simpler model. The testing
procedure shoula be used even if the model format is "known" since the data
base can easily lack the quantity and the quality for estimating all of the
model parameters with sufficient accuracy.

Reference 4 provides an example of a model which failed a test of pre-
diecting the system's response. Figure 1 shows how the fit errcr varied for
both the data used to determine the model parameters and that of the test,
versus the number of model parameters. The lower curve shows that as
additional unknown parameters are included, the fit error decreases. When
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the models were tested by predlicting independent response measurements,
however, the upper curve shows that models having more unknown parameters
performed more poorly than simpler models. Fortunately, more data were
available but had not been used in the interest of reducing the computational
effort. When four times the data were used to determine the parameters of
the same models, the results shown in figure 2 were more successful. The

fit error for the predicted response tests continued to decrease as the
number of unknown model parameters increased, thereby validating the more
complicated models.

Unless such tests are performed, the analyst is not assured of the
validity of his model. Unfortunately, reserving part of the data for
testing is costly. A means of making such tests without requiring inde-
pendent data is discussed in a later section of the paper.

SYSTEM IDENTTFICATION WITH MODEL FORMAT UNKNOWN

One never knows in an absolute sense what the model format is of any
Physical system because it is impossible to obtain complete isolation. Even
if the model format was known with certainty, it is necessary to test one's
results against a simpler model, a point made in an earlier section. Regard-
less of the cause, the requirement is the same: a number of candidate models
must be compared on a basis which reflects the performance of each in achiev-
ing the model's intended use. For the purpose of this discussion, it will
be assumed that the model's intended use is to predict the response of a
system and that a meaningful measure of the model's performance is a weighted
mean-square error.

A Criterion for Comparing Candidate Models

Let us continue the discussion of the problem stated earlier using the
same notation. The weighted mean-square response error which was minimized
by the minimum response error estimate was

N
J=Z(z - v.). (= -¥y.)
S R AL R )

i=1

Let us denote the weighted mean-square response error which corresponds
to testing the model's performence in predicting the system's response as

N
1 _ 1 T 1
J—Z(Zi’yi)bl(zi-Yi)
i=1
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where zl is measured response data that is not part of 2z which is used

to determine the model parameters. For convenience, we consider the input,
u, to be identical in both cases.

The criterion suggested for comparing candidate models is the expected
value of Jl. If it is possible to exEress the expected value, E{J1}, in
terms not involving actual data for z-, then a considerable saving in data
can be made and lmproved estimates will result from being able to use all
available data for estimating.

Let us examine first the expected value of the fit error with respect
to the data used to determine estimates of the unknown parameters.

We can express the response error as

)

Z-Y =Y et RV Sy tn-Y - v.y(e -

c
true true c true

I

)

n- ka(c - ctrue

assuming the response can be linearized with respect to the model parameters
over the range in which they are in error.

The expected value of the fit error, E<§i>, becomes

E{J}

et
B ZJ (Zi - Y3 )TDl( 23 = yi)
i=1 f

il

N
\" " A

E ZJ[% - (Veyyl(e - ctruei]TDl n - (Veyy)(C - ctruaii}
i=1

Expanding we get

N N
E(J} = E ZnTDn - oE znTD(Vy)(S—c )
i "1 i 71V e’ true

i=l i=l

N

N (aT T T A

+ E 24 (&% = e (Vo ) D (Veyy (@ = epppe)
1=1

If a maximum likelihood estimate is used, or if the minimum mean-square
response error estimate is used with a weighting equal to the measurement
error covariance matrix, then we can write
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Q>

N N
T =1 T -1
i=1 i=1

again linearization is assumed and it is noted that
Zy 7 Yerue; T ™

After substituting we get

E{Z n, M n} - EE{P Q ]‘P} + E{PTQ loq” ]'P}
B {z niTM-lni} - E GTQ-IP}

N
Z (chi)TM .

i=1

ElJ)

where

g
i

o
I
=

véyi M lvéyi

i=1

Next, let us examine expected fit error E{J]} of a model used to predict
response measurements, zl, which are independent of the data =z, used to
determine the estimates of the model.

We can again express the expected fit error as

N
E<Jl> - E Z n - °F z lTDVyi(c-ctrue)
i=1
N
AT T T R
EZ (c - ctrue>(vbyi) DlVEyi(c - ctrue)
1=1
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Note that the only difference between the above expression and that
obtained earlier for E{J} 1is that the noise vector is nl instead of n.
The same expression can be used for ¢ as before since it is the estimate
of ¢ Dbased on the data, =z, that is desired.

-lN

N
Z (chi )TM-lvcyi Z (chi )TM-lni

i=1 i=1

0>
"

Substituting the above expression for 6, and M-l for Dl wve get
N N
1 1 T l l 17T - -1 T.-1
E(_J) = E 2 - 2E Znimlvcyiq Z(vcyi)m
i=1 i=1

+E{pﬁ}

where P and Q are defined as before. Since the nolse vector, nl and
n, are uncorrelated, that is

E GinliT} =0 forall 1 # J

then the second term is zero.

Since the noise vectors n and nl have the same covariance matrix,
M, we can write
~

1

E Z ol I Int ) - TRacE

E
L
[ rx
E

TRACE

b ]

TRACE[NIJ =N M

1}

vhere N 1s the number of time samples and MZ is the number of measure-

ment quantities. Also
N
T, -1 .
}: ny M n, ) = N M

i=1
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We can now express B {Jl} in terms of E(J) as
E{J") =E(J) +2E (P'Q1P)
Examining the second term

N N
E(piglp) =& Z niTM‘]vcyiQ'l Z(chi)TM_lni
171 i=1

After taking the trace of the scalar and reordering the vectors we

get
N N
T - T - -1 T -1
E{P'Q"'P) = TRACE|E }Z }J nsn; "M lVEyiQ (Véyj) M
i=1 j=1
Because the noise is uncorrelated at unlike times, the term simplifies
to
N N
E{§¢5)=HME>Jvm¢lZ(VyFWl
e’i |
i=1 j=1

Finally, we have that the expected fit error for the case of testing
the model's prediction of the system's response as

N N
1 -1 T -1
E{J"} = J + 2 TRACE }; V;yiQ }: (ngj) M
J=1

i=1

Since it is available, the actual fit error, dJ, is used instead of
its expected value. The intent of the new criterion, E [Jl], is that it
be used instead of J in determining the level of model complexity that is
best.

An Application of the New Modeling Criterion

The control input and response time histories of the numerical example
used to demonstrate the use of the new modeling criterion are shown in
figure 3. The dynamics resemble that of the lateral-directional modes of
an airplane and are described in detail in reference 5. The level of noise
that has been added to the calculated time histories is also indicated in
figure 3. The sampling rate was 10 samples per second. The unknown param-
eters in the A, B, and b matrices can number as many as 10, 9, and 4,
respectively. Only 16 parameters have values other than zero.
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Five sets of calculated responses to which nolse was added, were
analyzed using the algorithm of reference 5. The analysis was repeated,
allowing a different number of parameters to be determined by the algorithm.
The fit error, J, in each case was averaged for the five sets of responses,
and plotted as the lower curve of figure 4 as a function of the number of
unknown parameters allowed to vary. As the number of unknown parameters
was increased, terms were always added and never substituted. Because of
this it can be argued that the fit error, J, should be monotonically
decreasing as the number of unknown parameters increases. It can be seen
in figure 4, however, that a point is reached beyond which J increases.
The reason for the increase is because there is a point reached where
convergence is a problem because of the essentially redundant unknown param-
eters. Although some of the five cases for 23 unknown parameters showed a
decrease in J, others did not. The analyst might be tempted to settle for
the model having 19 unknown parameters since the calculated response best
fits the "measured response." It would be a mistake to do so; one that is
often made.

In addressing the question "Which of the candidate models best predict
system response?" a test was applied. The results of the test were then
compared to the modeling criterion in the following way. For each set of
unknown parameters determined, the corresponding calculated response was
compared to the true response to which independent noise was added. The
resulting fit errors were again averaged and plotted in figure 4 as the
upper curve. The test performed simulates the practice of reserving actual
response data for model testing purposes only. As a result of these tests
it can be seen that a model with only 10 unknown parameters is best in terms
of predicting system response. This is six parameters fewer than the "true
model." That is to say there was less error in setting six parameters to
zero than the error resulting from trying to determine more than 10 unknown
parameters. The number of parameters that best predict system response will
increase if additional data are used or if the noise is decreased.

The purpose of the new modeling criterion is to eliminate the need of
independent response measurements comparing the model candidates, thereby
allowing all of the response data to be used in determining the unknown
parameters. The new criterion was calculated as part of the systems
identification algorithm and the results are shown in figure 5. The results
of testing the candidate models given in the previous figure are included
in figure 5 for comparison. The minimum in the curve for the new criterion
occurs at 10 unknown parameters as was the case for the previous test
results. This indicates that the new criterion can be used instead of
testing the model candidates against independent response data.

The Problem of Too Many Candidate Models

Although it is a great help to have a criterion for comparing candidate
models, there remains a problem of an excessive number of candidate models.
Figure 6 illustrates the enormous number of candidate models that result
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from the combinations of unknown parameters that can be used for the simple
example used to illustrate the modeling criterion. The total number of
possible candidate models exceeds 8 million. Even though it is possible to
greatly reduce the amount of calculation effort by neglecting changes in the
gradient of the response with respect to the unknown parameters, V.y,
solving a set of simultaneocus, algebraic equations would still be required
for each model. Consequently, the calculations involved for 8 million
candidate models becomes an economic consideration. It is estimated that
testing all of the 8 million candidate models would require about one hour
on & CDC-6600 computer. As the maximum number of unknown parameters
increases, the number of possible candidate models rapidly becomes
astronomical.

In practice, the analyst has enough understanding of the dynamics of
the system being modeled to know to some degree which terms are primary and
which are less important. It would be valuable, however, if one did not
have to rely on the analyst's Judgment. The problem of searching for the
best candidate model, therefore, remains a formidable problem worthy of
attention.

CONCLUDING REMARKS

The analyst often faces the problem of selecting a model's level of
complexity in addition to determining the model's unknown parameters. If
a model 1s selected solely on the basis of fit error or a likelihood function,
the model will probably be less accurate in predicting system response than
a slmpler one.

Several models of varying complexity should always be examined and at
least tested by predicting system response using measurements not used in
determining the unknown model parameters. Unfortunately, this form of test
requires reserving part of the totel data for testing only.

A new criterion was developed by expressing the expected fit error that
would result from testing a model. The proposed criterion was shown to glve
the same results as testing against independent data. By using the modeling
criterion instead of testing & better model will result because all of the
data can be used to determine its unknown parameters.

A problem exlsts because of the large number of possible candidate
models caused by the numerous combinetion of terms. The example which
involved up to 23 unknown parameters, corresponds to over 8 million candi-
date models or combinations of parameters. Although it is possible to
reduce the computation effort involved, the problem of efficiently searching
for the best candidate model remains an area worthy of attention.
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A PRACTICAL SCHEME FOR ADAPTIVE AIRCRAFT
FLIGHT CONTROL SYSTEMS*

by

Michael Athans and Dieter Willner
Massachusetts Institute of Technology
Department of Electrical Engineering

Cambridge, Massachusetts 02139

SUMMARY
The purpose of this paper is to present a flight control system design, that
can be implemented by analog hardware, to be used to control an aircraft
with uncertain paramcters. The design is based upon the use of modern
control theory. Tne ideas are illustrated by considering control of STOL
longitudinal dynamics.

1. Introduction

This paper is motivated by practical considerations in the design of
stability augmentation systems for high performance and STOL aircraft
whose dynamic characteristics are changing. Such changes in the aero-
dynamic derivatives have been the primary motivation behind numerous
techniques for parameter identification of aerodynamic parameters.
Although such procedures are useful for off-line parameter estimation,
it is not quite clear how they should be used for on-line closed loop
automatic control.

There seems to be general agreement that on-line computational require-
ments of least square, maximum likelihood, and extended Kalman filter
methods are far too severe for on-board implementation. If one also
considers the additional computational requirements for the determination
of appropriate autopilot gains (say using the linear quadratic-gaussian
methods of modern control theory), then there is little doubt that
simultaneous identification and control is not a feasible practical
method for aircraft control system design, at least in the near future.

This paper discusses a method that appears practical for on-board im-
plementation. The method presupposes that off-line calculation of aero-
dynamic derivatives has been made at N distinctly different flight
conditions. For each flight condition one has a linear time-invariant
state variable model which represents approximately the aircraft dynamics.
The flight path of the aircraft, and its changing dynamic characteristics,
may not however, coincide always with one of the N dynamical models.
Hence, a switching type autopilot may not be sufficiently good, especially

*This research was carried out at the Decision and Control Sciences Group

of the MIT Electronic Systems Laboratory with support extended by the NASA
Ames Research Center under grant NGL-22-009-124 and the Air Force Office

of Scientific Research under grant AF-AFOSR-72-2273. The work of D.Willner
was supported by the MIT Lincoln Laboratory, Lexington Mass. This paper was
presented at the Symposium on Parameter Estimation Techniques and Applica-
tions in Aircraft Flight Testing, NASA Flight Research Center, Edwards

AFB, California, April 24, 25, 1973.
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if the total number N of models available is small. The proposed control
system 1s a type of smooth transitional autopilot, in contradistinction
to a switching one. It can be realized using analog hardware. The
practicality of the above "analog" scheme, hinges upon the fact that
integrated circuits can be used to construct high reliability, low
volume, and low weight constant coefficient dynamical systems. Thus,

no actual digital computer hardware is needed.

2. . Technical Discussion

Suppose that off-line parameter estimation techniques have resulted in N
distinct dynamical models for the aircraft under different flight con-
ditions. This corresponds to having a priori available the following.
state space representations

1) gi(t) = Ax (t) + Bu(t) + Qi(t)
(2) z(t) = gigc_(t) + 6(t)

where {Ai’ gi,_gi} are constant matrices associated with the i-th model,
u(t) in the actual control vector, 2(t) 1s the actual measurement vector,
gi(t) is the state vector of the i-th model, £ (t) is plant white noise,

and 9(t) is measurement white noise.

Imagine that over some time interval one of the i models is the true one;
however, we do not know which one it is. The problem is to generate a
control input u(t), based on the actual measurements z(t), so that the
performance of the system is satisfactory. The problem is complicated
by the existence of the stationary white noise processes gi(:),,g(c);

we assume that they have zero mean and a priori known covariances

3 ElE (E[(M) = E8(e-1); E{8(1)8" (1)} = 88(t-1)

If we knew with absolute certainty which model was the true one, then we
could generate the control u(t) using the (by now standard) techniques
of the Linear-Quadratic-Gaussian (LQG) design that utilizes the steady-
state Kalman-Bucy filter and control over the infinite time interval
(Ref. [1]). So if it is known that the i-th model is the correct one,
one would use a performance index
T

. 1 / . '
(4) Iy %12 LT 4 Ei(t)gigi(t) +-91(t15151(°)dt
and obtain the following solution for the optimal control
(5)  u(t) = u,(6) = G2, (e)

where Ei is a constant control gain matrix and ﬁ;{t) is generated'by the
steady state Kalman Bucy filter

) TR0 = AR (D) +Buc) +

at &4 Br(®
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whete_gi(t) is the residual (innovations) process of the Kalman filter
(M r (&) = 2(c) - €&, (¢)

The control gain matrix Qi is found by

-1,
® 5 = KBK

where 51 is the positive definite solution of the algebraic matrix Riccati
equation

(9 0= -KA-AR QKB EBIK,

The filter gain matrix Ei is found by

an B =16

where 21 is the positive definite solution of the algebraic matrix Riccati

equation

-1,
) 0= AL +IA+E - LGO GL

The important aspect of this design from a practical point of view is
that the control u(t) is generated by operating upon the measurement
z(t) by a linear time invariant dynamical system; this can be implemented
with very high reliability and low weight through the use of integrated
circuits.

However, as we have remarked before, we do not know which of the i-th
models is the correct one. Based upon the operating conditions at some
time t, ve may have an idea of which models are most likely and which

are not. This is then modelled by assuming initial probabilities
12) p,(c), pz(to),...,pN(to)

where Pi(to) is the a priori probability that the i-th model is indeed the
correct system.

It turns out that for any input u(t) one can construct the a posteriori
probability pi(t) that the i-th model is the correct one, given the actual

measurement vector z(T), t < T <t, and utilizing the residuals r,(t),
ge(t),...,gﬂ(t) generated by a bank of N Kalman-Bucy filters (as defined

by eqs. (6), (7), (10), and (11)). This has been demonstrated by many
authors (see for example reference [2]).

The results of Refs. [2] - [4 ] can be modified to yield the following
equations for the computation of the pi(t). From each Kalman-Bucy filter

we generate a scalar time function ﬂi(t) using the residual vector.gi(t)

as follows:
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13 gt A%g_i(t)g-lgi(t) s 4=1,2,... N

These time functions then can be used to compute the time functions
(1ikelihood ratios) Aji(t), i¢3j, 1, u=l,2,...,N by solving the scalar
differential equations

W) G Ay (0) = A (0 [g(®) - g, ()]

The likelihood ratios in(t) are related to the a posteriori probabilities
pi(t) as follows:

()
-1 . LS haid
(15)  p,(t) = I
PIRIFIC 1
=1

From (15) we obtain

A, (t) N
(16) '<t)--§':1 i -2 T AL
Py 2 Py oy 91 t

N
- 2 pM Ay (0 gy ()=, (©)]

i=1
N p,(t)
= -p,2(®) z B'I'(ET la (€)=, (©)]
N
= -p,(t) };1 pj(t)[gi(t)-gj(t)]
N
But since 2: pj(t) = 1, eq. (16) reduces to
i=1
N
(17) fai(t) = p,(t) (Zl pj(t)_q,j(t)) - g,(v) i=1,2,...,N
j-

Eq. (17) shows that the a posteriori probabilities can be constructed by
solving a system of N nonlinear differential equations driven by the
actual residual signals (via the functions gi(t) -~ see eq. (13)).

The set of differential equations (17) since they are time invariant can
be solved using purely analog means (integrators, multipliers, and
summers) since 0 < pi(t).g 1, there are no scaling problems that will

arise. Indeed, asymptotically, one of the pi(t) will converge to 1 (the
one associated with the correct model) ,and the rest of the pi(t) will go
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N
to zero. Also, note that the term 2: j(t)g_j(t) is common to all equa-
i=1
tions defined by (17) further contributing to the ease of solution.
The control scheme that is then proposed is to generate the actual input
u(t) to the unknown systems by weighting the subcontrols gi(t) = 1§i§1(t)

by the a posteriori probabilities, i.e.,

N N
(18) u(t) = ¥ p,(thu () = - El py (£)8,x, (t)
=1 1=

Note that it is then this control u(t) that is used to drive the Kalman
Bucy filters (see eq. (6)) rather than the subcontrol gi(t).

The use of the control scheme (18) is appealing because of its inherent
simplicity. References [3] and [4] have analyzed its general performance
characteristics. From the viewpoint of on-line control of aircraft
potential value of this scheme is that it can be realized using time
invariant hardware (integrators, multipliers, constant gain amplifiers
and adders). It does not require on-line parameter identification and
on-line computation of control gains, which in general require digital
computers.

As the aircraft moves to a different operating condition, the control
system can be reinitialized simply by changing the a priori probabilities
pi(to) corresponding to that condition.

The structure of the adaptive system is shown in Figures 1 to 3.

3. Numerical Considerations and Simulation Results

In the first part of this section we discuss possible modifications of
the results obtained earlier. These modifications may be necessary to
design stable autopilots. In the second part simulation results for a
STOL aircraft (longitudinal dynamics) are presented.

3.1 Adjustment to the Filter Gain
The filter gains are computed from Eq. (10). To prevent divergence
of the individual filters it may be necessary to increase the state
noise covariance Z(t), i=l,...,N. Filter divergence is sometimes
a problem in matched systems, i.e., the system model corresponds
well to the true system. For mismatched systems, i.e., the system

dynamics is A, B, € and the model is Ai’ gi, Qi,divergence can

become a difficult problem. It can be avoided by either decreasing
the observation noise or increasing the state noise artificially.
Of course in that case the optimality of the individual filters

is forfeited.

3.2 Adjustment of the Probability Estimator
The probability estimator is shown in Fig. (3). 1Its analog network
represents Eq. (17) and contains multipliers, adders and integrators.
To compensate for integrator drift and inaccuracies of the analog
elements it will be necessary to adjust the Pi(t)’ i=1,...,N
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3.3

periodically. It is also essential to prevent the individual pi(t)
from becoming zero; once a pi(t) = 0 it will stay zero for all

future times no matter what happens to the original system. This
follows from Eq. (9) as for p;(t) = 0 also ﬁi(T) =0¥T>t,

These difficulties can be circumvented if the pi(t) i=1,...,N

are modified periodically. One such possible modification is
described here (the pi(t+) are the values of pi(t) just after

the modification expressed in terms of the values pi(t—) just

before the modification):
ai(t)

2 a, (t)

j=1
where o, (t) = p,(t) + €
and the € term (€<<1) compensates for integrator drift and avoids pi(t)-o.

N
At the same time this correction assures that 2: pi(t) =1,

i=1
If ¢ is chosen small enough (e.g., ¢ = .001) the effect on the
resulting probabilities and controller will be negligible. This
modification

a) prevents pi(t) = 0, 1,e., all controllers will be
considered for all future times

b) reduces errors due to integrator drift (otherwise the
pi(t) could become larger than one or smaller than zero

due to integrator drift)
Simulation
The simulation was done on a CDC-6600 digital computer. The dis-

cretization stepsize was chosen to At = .1 sec. and the simulation
length to AT = 20 sec.

The model (Hl) is seven dimensional as given in Table (1) and

represents the longitudinal dynamics for a STOL-aircraft on a
glidepath. Two different models H2’ H3 (for different points on

the flight envelope) were generated by disturbing some of the Hl—
parameters. Hz is intended to be a model for higher altitude, H3

for lower altitude at approximately the same glidepath and speed
(1t is not claimed that HZ’ H3 represent exact systems dynamics

for these flight concitions). The steady state Kalman-Bucy filter

gains H , and the controller gains gi i=1,...,N where approximated

by the solutions of the corresponding equations Egs. (8,9,10,11)
after 20 sec (or 200 steps). After 200 steps the individual
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gain parameters did not change more than .2% per step. The noise
covariance matrices £, O were chosen to represent reasonable dis-
turbances and measurement accuracies.

The penalty matrices Q, R for the cost criteria were picked after
a few trials, no extra effort was expended to find the "best"
pair Q, R. These were the same for all three models.

The linearized models of Table (1l)were used to design the individual
optimal controllers and filters. The resulting control should have
been applied to the true nonlinear STOL dynamics. Since these non-
linear dynamics were not available, the linearized model Hl(H1 = Htrue)
was used.

The first state Xy of the model was used as a noise shaping stage to

generate the vertical wind disturbances. Its input was white noise
with the intensity EZ, the output is xl(t) as shown in Fig. (4). This

wind distrubance is common to all experiments described in this paper.

Figs. 5(a,b,c) show the deviations of the forward velocity u' = u/vo,
the height Sh' = Sh/vo and the variation in pitch 8(t) due to the

disturbances and initial conditions x(0), for the optimal controller;
i.e., the a priori probabilities are p1(0)=1, p2(0)-p3(0)-.0; i.e., the

controller is told that Hl is the correct system [Case I].

Figs. 6(a,b,c) show the same changes év', Sh', 6 to the same dis-
turbances and initial conditions when the adaptive controller is
initialized pi(O) = .33, 1i=1,...,N; i.e., the controller is not

given any information which system generated the data [Case II].

Figs. 6(d,e,f) show the pi(t),i =1,...,N (the progress of identifica-
tion).

Figs.7(a-f)display a similar experiment as Case Il except that the
a priori probabilities are set to pi(O) = ,01, pZ(O) = ,79; i.e., the

controller is given the bad information that system #3 is the most
likely system [Case III].

Comparison of the Results

Figs. 6(d,e,f) and 7(d,e,f) show the speed of identification of this
algorithm. Although the system dynamics seem relatively similar, the
controller always converged to the correct system (usually within

2-6 seconds). For slightly more dissimilar systems identification
was completed usually within 1 second.

From Eq. (17) for 5i(t) it is apparent that the speed of identification

(ﬁi(t)) increases if the systems are more dissimilar, since then the
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ﬂi(t - %-Ei'(t)gflgi(t) also differ more. The u', Sh', 6 from

Figs. 5 (a,b,c), 6(a,b,c), 7(a,b,c) are fairly similar for the
different cases; this is mainly due to the rapid identification --
because the controller—gains are not very similar at all. From the
Figs, it can be seen that the peaks of the states u', 6h', 0 increase
as the controller deviates more (bad p,(0) initially) from the optimal
controller. This deterioration is demonstrated by the increasing cost
for increasingly bad initial information in Table (II).

4. Conclusions

An adaptive controller is proposed, that is easy to implement on analog
networks. It uses only precomputable steady state filter and controller
gains. The controller facilitates a smooth transition from one
operating point of the flight envelop to the other. The overall
controller converges to the optimal steady state controller if the

STOL dynamics correspond to one of the hypothesized system models.
Simulation results support the theoretical results and claims that

were the basic premises for the design of this adaptive controller.
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Physica

TABLE 1
®(t) = Ax(t) + Bu(t) + E(t);

1 Significance of Variables

xl(t): vertical wind disturbance

xz(t) =

x3(t)

x,(t) =
xs(t) =
xc(t) =
x,(t) =
u, (t) =
u,(t) =

g °<:|¢:

z(t) = Cx(t) + 6(t)

= normalized perturbation in forward velocity (%)

~— = o = normalized perturbation in angle of attack

<

o
pitch rate (rad/sec)

pitch perturbation (rad)

;h = normalized height perturbation
o
thrust coefficient

throttle input

elevator angle (rad)

v = nominal forward velocity 126 ft/sec.

Svystem Parameters

Model #

1.

B

—

>
]

o e

.

e’
(]
cooo

1 (Hl) true model

25 .0 .0 .0 .0
0855 -.0373 .0855 0 -.255
556 -.522 -.556 1.0 .0268
2 .2087 -1.2 -1.47 -.0107
0 .0 .0 1.0 -.001
0 -.105 -1.0 .0 1.0

0 .0 .0 .0 .0

0 .0

0 -.0043

0 -.096

0 -3.6

0 .0

0 .0

5 .0

0 0.000 0.0 0.0 1. 0.0
0 0.000 0.0 1.0 0. 0.0
0 0.000 0.0 0.0 0. 1.0
0 -.105 -1.0 0.0 1. 0.0

[eNoloNoNeloNo]

(@ Ne No i)

00

-.1343
-.0212
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TABLE I (Cont'd)

Model #2 (Hz): A(2,5) = -.19

A(3,7) = -.1
A(4,3) = -.9

B(4,2) = -2.8

All other
parameters
as above

Model #33(H3):

C. Cost function penalty matrices

A(2,5) =
A(3,7) =
A(4,3) =
B(4,2) =
All other

parameters

as above

Q = diag [.0, 100.0, 3.0, 3.0, 3.0, 10.0, 200.0, 20.0]

R = diag [10.0, 5.0]

D. Noise intensity matrices

E = diag [.001, .0, .0, .0, .0, .0, .0]
© = diag [.0001, .0001, .0068, .0002]

E. Initial state

x(0) = [.0, .0, .0, .0, .0, .0, 0]

Initial State Estimate

%(0loy = [.0, .0, .0, .0, .0, .0, .0]

TABLE II

Comparison of Expected

and Measured Cost

Expected Cost

Measured Cost

pz(O) = ,2, p3(0) = ,79

(precomputed)
Case I p,(0) = 1.0 57.376 80.612
pZ(O) = 0., p3(0) = 0.
Case II pi(O) = ,33.,, — 80.674
1=1,2,3
Cage III p,(0) = .01 — 83.188
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This Disturbance is Common to All Three Cases Shown in Figs. (5,
6,7)
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Fig. 5 a: Deviation of the Forward Velocity u' Due to the Disturbances

Fig.

5

s [O/J ult)

6

AN

T rrrvy 111717 UrTd
0 20 40 60

L U AR T U N |

T r 1T i 1T 171
80 129

i
14p 160

100 80
TIME (sec]

1890

[Case I]

(¥ .01 rad ] O

i

o
lllllllllllll*

R I L e B S N
200

S\

o

>

*

[N IS I U I S T N U N B |

| SR L

lll11l1|\l|l||llll|1llll
80 200

0 20 89 100 129

T 1T
140 160 180

TIME[{€c¢]
c: Deviation of the Pitch 6 [Case 1]

T

™
Lhall}

329



330

1

1

Fig. 5 b: Deviation of the Height &h'

Do {

zjllo} /h(t)

0_ <

'-

-

°~

‘~

z‘
/\w N
l[lll]lllllllllI[Ytlll]ll||||'|lllr|l]rr||=

2 4 60 8 100 120 149 169 180 200

TIMEL ey

Above the Glide Path [Case 1]



>

4 :C;/oJ M'(.t)

AN

———

YIIIIlllll|1l‘|lllllllllllll|l|llIl‘l!llll=
0 20 40 Y} a0 109 120 149 180 180 2
TIME [sec]
Fig. 6a: Deviation of the Forward Velocity u' Due to Disturbances
[Case II]
4y ;
¢ e raa | I

TN BN OO I O N B . W B S O |
/v [

A

-l
=
ﬁ
-
-
-
1[!1\11!T|||1Ill||Il|llllll1llll|||lllllll'
] 29 40 80 80 100 120 140 180 1890 200

TIME [sec]

Fig. 6c: Deviation of the Pitch 6 [Case II]

331



332

L
20p

rMrrrrrrrrrTrr LRLURRE L NN A N N N S M | LR D B I |
) 20 » 80 a0 100 129 149 189
T IME]_.‘-;‘&J

LI N S S |

180

Fig. 6b: Deviation of the Height 6h' Above the Glide Path [Case II]

T



Fig.

Fig.

Fig.

y
Tpie)
1.0
-
0.8 ]
-
0.6]
0.4]
0.2]
o ] >
Illl'llll‘lll]llt‘ll1||||IlIYl!|YlllYl|!"||
0 20 49 ep 8p 109 129 1? 16 180 2Q0
IMEL !

6d: Probability pl(t) of Observing System 1, [Case II]

maj t B
0.4
—
0.2 ]
o ] o
T1 rirrryrrrryrrqyyrrrrrrrrryryrrrrrrrrrrrrrrrovvyuruTE
0 20 4 LY 8p 109 120 140 160 180 200

TIME fucvy

6e: Probability pz(t) of Observing System 2, [Case II]

o.a_!r:w

0.6
-

0.4 ]

0.2]]

o ] -
3 rvYvrrrrrrrrrryrrrrrrrrrrrrrmrreraovy vy

0 20 Y 6o 80 100 129 149 160 1 200
TIME -+
6f: Probability p3(t) of Observing System 3, [Case 1I]

333



LI LIS UL IR L N IR IS B | rrrrrTTrTrTTTT T TT T T I r7rvr 7V 7T 7T Vi TrTTTrmre
n 2p 49 8p 8p 100 129 149 160 180 209
TIME (Lcoy

Fig. 7a: Deviation of the Forward Velocity u' Due to Disturbances
[Case IIT)

1

ot aa ] G

Lt

-

L4 4t 14 4 & & (¢ 4§ & & ¢ ¢+ 8¢ 1t 1ttt

(]

rrrvyryrvrvrrrrrrrrr T T T T T T T T T T T T T T T=
0 20 4p [.X1] 89 100 120 140 180 180 200
TIME L»(»J

Fig. 7c: Deviation of the Pitch 8, [Case TII]

334



¥ 1

oo‘ Sh'(t)

-

zp zl

T T T oo
[

80

|
10p

rroy T 11T vy vid

129

149 10,0
TIME[sec |

Tl

189

LB

|
200

Fig. 7b: Deviation of the Height 6h' Above the Glide Path [Case III]

T

335



»

P &)

U N U U U A N N A NV SN O N O N N A

0 -
- T rrrrrrJirrrrrrvyriyvyrorvirved rvVYrrYrrrorrvrvi1iu1vid 1T T
o anl 49 60 80 100 129 149 180 180 200
TIME

Fig. 7d: Probability pl(t) of Observing System 1 {Case III]

0.4 P%)
0.2
0
1]r1|||1llllllll‘l]1[l]]lrll]TTll[ll|||l1l|='
0 20 4 89 89 100 12p 140 140 180 2Q0
TIMEL .ol
Fig. 7e: Probability pz(t) of Observing System 2 [Case III]
oo
Loé'ﬂ"
0.8
0.6
0.4
0.2]
o T T T T
o | 20 | 40 "o n 591 l lulz,()' ‘ '1;9‘ ' szp] I [1Ap‘ 180 200

TIMEL~ccd
Fig. 7f: Probability p3(t) of Observing System 3 [Case III]

336



ESTIMATION OF ELASTIC AIRCRAFT PARAMETERS
USING THE MAXIMUM LIKELIHOOD METHOD
By R. C. Schwanz and Dr. W. R. Wells

Control Criteria Branch

Flight Control Division
Air Force Flight Dynamics Laboratory
Wright-Patterson Air Force Base, Ohio

ABSTRACT

This paper discusses the application of the maximum 1likelihood method to
estimate the aerodynamic parameters of elastic flight vehicles in a symmetric
flight condition. In this application, particular attention is directed toward
the center of mass, elastic deformation, and sensor equations of motion. It is
shown that the two major computational problems to be overcome are the inver-
sion of large-sized matrices and the time-wise integration of a large number of
linear, ordinary, differential equations. This method will be verified using
the B-52 CCV aircraft flight data.

INTRODUCT ION

On modern aircraft, the practical necessity of removing all excessive
structural weight, whether thru conventional design practices or active aero-
dynamic control systems, has resulted in vehicles that are more aeroelastic
then previous vehicles with similar operational missions. To a degree, all
flight vehicles, including fighter aircraft, are aeroelastic. The degree of
aeroelasticity depends upon the particular flight condition-Mach number,
dynamic pressure, and mass distribution-at which measurements or observations
are made.

in order to minimize the technical risks involved in the design of flex-
ible vehicles, a prototype vehicle is often constructed prior to committing a
large amount of resources to a production vehicle. The SST program is an
obvious example. The intent of the prototype vehicle is to demonstrate that
the design meets all the mission objectives. This demonstration entails flight
tests of the prototype to verify the basic design decisions and to isolate any
configuration problems that would be objectionable in the production vehicle.
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An obvious first suggestion in optimizing the flight testing of the
prototype is to apply modern parameter estimation methods to determine the
important stability and control parameters that affect the handling qualities
and flight control of the vehicle. However, most existing parameter estimation
methods treat the flight vehicle as a "rigid'' structure, thus eliminating the
possibility of explicitly Identifying important aeroelastic parameters that
affect the flight data. At the very best, the existing methods model the
vehicle as QUASI| STATIC aeroelastic by assuming that the structural distortion
occurs with infinite accelerations which produce an instantaneous response to
motions of the center of mass of the vehicle. Thus, the structural motion is
assumed to have the phase of the body-fixed, axis system motions such as U, x,

8, ¥, g+ ret cetera.

If the flight tests of a vehicle indicate a QUASI STATIC behavior,
modern estimation methods will determine vehicle parameters that are a product
of the aerodynamic stability and control derivatives of the 'rigid' vehicle
multiplied by an aeroelastic correction factor, e.g.,

ELASTIC RI&/O ELASTrIC RIG/D
CL Py CL.‘ ( CL.( / C‘“ )

-
where the correction factor C:usnc/c‘:mp is analytically determined. The

inclusion of even the simplest aeroelastic correction factor complicates the
desired design verifications, since the data determined from flight test must
then be correlated with wind-tunnel-measured data that have been modified by
analytically-determined, QUASI STATIC correction factors. Often the factors
will change both the magnitude and the sign of important stability and control
parameters.

With the advent of more highly elastic flight vehicles, characterized as
Control Configured Vehicles (CCV), the determination of the aerocelastic
stability and control parameters increase in importance. These vehicles are
designed such that a flight control system (FCS) solves structural and dynamic
stability design problems, e.g., handling quality, ride quality, reduced static
stability, maneuver loadability, structural fatigue, and flutter. Of course,
with the dependence of the vehicle on FCS, highly accurate design data sets are
required such that the gains of the FCS are near their final value on the pro-
totype (1,2), |t is difficult to envision the conventional approach of ‘'gain
twiddling'' on a CCV FCS, since the primary structure is not designed to
tolerate loads and dynamics with the FCS Inoperative or improperly operative.

Thus, the purpose of this paper is to examine the problems Involved in
modelling complex aeroelastic flight vehicles such that modern parameter
estimation methods may be applled. The commonly available mathematical formu-
lations of the dynamlic elastic vehicles as discussed by Schwanz (2) will be
reviewed and the approximate formulation, MODAL TRUNCATION, will be selected
for further consideration. Previously neglected structural motions measured
by sensors will be modelled rather than ''filtered' as in present day methods.
Then the equations of motion and accelerometer equations will be combined to a
state vector form amenable to the maximum 171kelihood method as discussed by
Wells(3). A brief discussion of the problems Involved in mechanization of the
computational algorithm ends the paper. More detalled discussions of the main
points In the paper may be found in another article by the authors(4). As the
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computer implementation of the algorithm has just begun, numerical results are
presently unavailable.

In this discussion of the maximum 1ikelihood method applied to the
elastic aircraft, numerous simplifications are assumed in order to illustrate
the effects of aeroelasticity. The primary reason for these simplifications is
to first solve the linearized problems and then to proceed to more complex non-
linear problems as experience is accrued. Thus, this analysis herein serves as
a test case for subsequent non-linear analyses.

The linearized equations discussed in this paper describe the so-called
symmetric, small disturbance motions of an elastic -flight vehicle. Further,
the problem is restricted to the initial conditions of steady, non-rotating
flight, with the wings level, and with the relative velocity vector of the
center of mass parallel to the flat earth. In addition, the following simpli-
fications and assumptions are employed:

The thrust is assumed to be constant during the perturbation motion and
its magnitude determined solely by the initial conditions of flight.

All motions, body-fixed axis system and elastic deformation , are of
small perturbation magnitude and are of the same order.

The sensor locations are assumed to be precisely prescribed for some
aircraft shape and the signals of the sensors are assumed to be
free of bias.

The generalized stiffness, mass, and damping as well as the total mass
and inertia of the aircraft are assumed to be known (within some
tolerance) by previous measurements or calculations.

The elastic flight vehicle is adequately represented by lumped masses
related structurally and aerodynamically by finite element theory
(Figure 1).

Process noise or turbulence is assumed negligible.

The extension of this analysis to the coupled, non-1inear ordinary
differential equations of motion, to arbitrary initial conditions, and to the
inclusion of generalized mass, stiffness and damping as unknown parameters is
analytically possible. However, practical computer considerations preclude
this extension at the present time.

STATE EQUATION

The state equation to be used in the maximum likelihood method for
elastic aircraft describes the body-fixed axis system motions, e.g., &, W,
©, ® , the elastic deformations relative to the body-fixed axis, e.g., & -«
and ¢;d‘- , and the motions of accelerometers, e.g., @ . In the particular case
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discussed, the axis system motions are expressed in terms oi the non-lnertial
body-fixed axis base vectors(5),<$[are the retained invacuum mode shapes, and

U¢ are the generalized motions. In most analyses, ( ranges from / to + and,
usually, 3¢ r<20. The final state equation, equation (8), provides the
relationship between the parameters that are to be identified using the maximum
likelihood method.

Equations of Motion

The equations that describe the motion of the elastic flight vehicle are
complex and their derivation is lengthy. Sever?l publications that are of most
interest are th057 ?y Bisplinghoff and Ashley(6), Miine(7), Schwendler, McNeal (8)
and Dusto, et.al. 9). The notation and conventions to be followed in this
paper are those of Schwanz(2).

As discussed in reference 2, the many formulations of the linearized
equations of motion of elastic aircraft commonly found in the literature and
employed in aeroelastic stability and control analysis may be grouped into
six categories:

QUASI STATIC - The motions of the structure are assumed to be in phase
with the rigid body motions: elastic motion acceleration is infinite
The method is used primarily for handling quality and reduced static
stability FCS design for elastic aircraft with wide frequency
separation between the axis system and elastic motions.

EXACT - The motion of the structure is determined by the eigenvalue
(root) and eigenvector (mode shape) solutions of the equations of
motion for the elastic aircraft. The mode shape coordinates contain
complex numbers. The accuracy of the solution is limited by the
existing computerized routines that calculate the complex number
eigenvalues and eigenvectors. .

MODAL SUBSTITUTION - The motions of the structure are assumed to be
related to the orthogonal, invacuum eigenvectors (mode shapes). All
eigenvectors contain only real numbers.

RESIDUAL STIFFNESS - The mode shapes representing the elastic motion in
the MODAL SUBSTITUTION formulation are separated into '‘retained' and
'deleted'' modes. The deleted modes are represented in the dynamic
stability analysis as quasi static aeroelastic corrections, using a
correction factor related to the deleted modes and the stiffness of
the '"free-free' structure.

RESIDUAL FLEXIBILITY - Similar to the RESIDUAL STIFFNESS formulation,
except the quasi static aeroelastic correction is related to the
retained modes and the flexibility of the free-free structure.

MODAL TRUNCATION - The deleted modes of the RESIDUAL FLEXIBILITY formu-
lation are not represented by. any correction factor. This is the
most common dynamic aeroelastic formulation reported in the litera-
ture.
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A close examination of the six approaches indicates that the MODAL
TRUNCATION formulation is the easiest to implement when determining the aero-
dynamic parameters of an elastic aircraft. The reasons are that the MODAL

TRUNCATION formulation:

includes a significant amount of the structural dynamics that affect the
FCS design.

Explicitly employs ''rigid" airplane stability and control derivatives
that may be estimated and directly compared to wind tunnel measure-
ments.

Is the most commonly employed dynamic aeroelastic formulation presently
used in design.

Is the least complex of all the dynamic aeroelastic formulations that
are identified.

The other five formulations each have an undesirable complication, As
mentioned previously, the QUASI STATIC formulation does not properly represent
all the structural dynamics important to the FCS and, in addition, requires
precise analytical method to calculate the aeroelastic stability and control
correction factors applied to the ''rigid' airplane data. Thc EXACT and MODAL
SUBSTITUTION formulations are more precise than the MODAL TRUNCATION formu-
lation, but they consist of an enormous number of equations in most analyses
and, thus, their selection would lead to an estimation procedure that would
require a larger computer than presently available. The RESIDUAL STIFFNESS
and RESIDUAL FLEXIBILITY formulations have the same number of equations as the
MODAL TRUNCATION formulation, but they have more complex aerodynamic terms due
to their representation of the static effects of the modal degrees of freedom
that have been deleted dynamically.

The MODAL TRUNCATION formulation of the equations of symmetric and
antisymmetric motion discussed in reference 2, has the following form:

. \ o ) .
Mo ol\V MM, © {""r} MMy o {"P} _ % f
o Zao|{fp t| o ol lu) *lo o )" {erf
o om|li o d o X ¢TF) ()

The definition of the matrices in equation (1) are:

T .
v = Lg v ud, the axis system perturbation velocities.

L

yi; LJD e “d, the axis system perturbation rotations.

_ M
M = [ M M]’ the mass of the aircraft.
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Ix» O - I)L‘z

I, =
" o I,y o , the inertia of the aircraft.
- Ilt () Ili
w o0 V3 =V,
Mlz. -
_\}; o V,| » the initial velocity of the center of mass of
the aircraft.
__Vz “Vl o
(2) [0 g O]
Mz = -9 © o], the perturbation gravitational forces.
Lo o ©]
-m' -
M = .. , the generalized mass.
: m

d,
d = T , the generalized damping.
d;
R,
'R = ) * , the generalized stiffness.
R;
¢l;| et ¢l,,['

..e
1}

, the retained invacuum modes.

4’60,] ce o ¢6n,j

- T
{CP\I 'F} = L'ry, -)(y {11’ thea:gzi;f:i:rody-namic forces acting on the
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T
57 t the total aerod
- > ynamic moments acting on the
{q)" .’L'} = LM My M"-I alrecraft.

T
T -
{q’ f‘} = ,_)(: .{: TP 70_( , the generalized aerodynamic forces acting
J
on each structural mode.

u - (_u. Ua = ° - “jJ , the time-dependent amplitude of each
generalized structural motion.

The symmetric degrees of freedom of interest in this analysls may be
separated from equations (1) by rewritting the first, third and fifth equations
and the equations for the symmetric modal degrees of freedom (defined to be
number of the j number of retained invacuum modes). The specific forms of
these equations in terms of Etkin's stability axis definitions, including the

expansion of £, f,, fg and £ . in terms of the non-dimensional
force coefficients, are: b faye o

Axis System Motion

ML:"’M39= '/j_PV'(ZC"O"'C%u\K"'l/z.OSVle“W

. . _
+ipsUc C,‘%e + Y PpSECxy b +7 8T Cxy W+‘/qfc SCx; 8

oNa

+£ (f’V,ls‘ Cxa‘-a;' + ‘/ZP\/lSCMi;&‘ + ‘/2 PSEC,,_;;‘ u;)

('={ 25
2 o . 3 { =2 os ...
+§c (Jz- PVi'S Cyg, 80 + b pViSECog, Si 5 po¢ Cot: S‘) (2a)

Y
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(=1

3

_2 . -2 ) _ .
+ 9 pST Cagit +1% pST Ly w + 3 bpVi S Cay, Wi
o

+ l’?_fv'$e Cb\uu + l/zfgvla C\M.(w + .5', l/sz)ZSCmu;u\'
L=

c -2 . -3 Py
t 5 (,lzpv‘zgg C”s;gc + '/sz,Sc C"‘f.‘ S + '/ZPSC C..i:_sc) (2¢)

ve)
Elastic Deformation

Ku; + Al‘. Ll{ + M u( = %PVIS Cq;uu t l/z P\/,S Cu;“\'}
~ '3 - . l - i ' 2 .é
+ l/q PV' Sé Cu;“ 6 + szf'&c de u t /ZeSc C“i“w-{-/“‘)(.'SC,lli

r z . - .
+ § (f_\;_.'_gs Cu;q). Wy + ’iFV.S Cu;\;‘.uf + ‘/2 pSc Cu; ,_‘,.:’.“"J)
Ja

c * - . .. -z .o
+ 5 (‘ﬁ AT Cu;% 5i + '/afV.Sc Cu.;sj Y +‘2p5c Cu.‘i}&') (2d)

=</

Equations (2) are characteristic of those employed in the B-52 LAMS('O),
the B-52 cCV(I1), the F~4 Flutter FCS(12), and the B~1 Ride Quality Fcs(13)
studies. It should be noted at this point, that equations (2) differ from the
usual structural dynamic equations used by flutter specialists due to the
frequency-independent, non-dimensional, aerodynamic force and moment coeffi-
cients. The reason for the uncomplicated, frequency~-independent formulation
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is that the development of FCS, particularly those characterized as a CCV-type,
requires an order of magnitude greater number of analyses of linear and non-
linear equations of motion than presently analyzed during flutter calculations.
Thus, specialized formulations of the equations of motion and the steady and
unsteady aerodynamics are used that are uniquely suited to stability and
control and flight control design work and that are generally much faster to
solve than those employed in the flutter design.

Next, equations (2) are rewritten such that all derivatives of the
motions are to the left of the equals sign. In addition, a vector of motions,
3 , and a control vector, § , are defined :

}T-.- U wed u Up--Ur QU - Uy

JT-: LSIS.' .3.. et 3: S.cguc _l

In terms of } and § , the equations of motion then become:
r'}=85*—68 (3)

or alternately

3 = F-|83 “‘F-'GS (ll)

where F is a square matrix of aerodynamic coefficients and specified inertia
terms, B is a square matrix of aerodynamic coefficients, specified inertia,
damping and stiffness terms, and G is a rectangular matrix of aerodynamic
coefficients. For instance:

F“: M-—l/z’?SEC'L\A
Bu = l/'z,Psvl (2Cko+ C\(u.)
Gu = l/7, PS V'sz;'

The objective is to determine the unknown aerodynamic coefficients in F, B8, and
G by analyzing time histories from the flight test of the vehicle. No process
noise, e.g., turbulence induced forces and moments, are included in this anal-
ysis, although, at this point in the study, the removal of the noise via the
Kalman filter as in ''rigid'" airplane analyses 14) seems plausible.

Sensor Equations

There are four types of sensors commonly employed in the design of the
flight control systems of aircraft. These are accelerometers, rate gyros,
inertial platforms, and air data sensors. Several authors have discussed the
appropriate equations of motion for those sensors that are used on 'rigid' air-
craft (3, 15), Very little work in sensor representation has been done for
elastic aircraft; most notable is the work by Dornfeld and Schaeffer(16) on the
FLEXSTAB/CCVMOD Computer Program System(17),
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It Is the specific Intent of thls section to develop the equations that
describe the motions of accelerometers placed on the aircraft. In this process,
equations for the four major types of sensors are developed, prior to special-
Jzing only to accelerometers. The more general equations are reserved for
future analyses, should the accelerometers prove to Inadequately describe the
elastic aircraft In the maximum 1lkel ihood method.

Prior to developing the equations of the sensors, a discussion of the
effects of aeroelastlicity on the sensor signals Is required, since most
previous analyses of flight test data assume that the effects of elastic defor-
mation on sensor signals are small. In practice, this assumption is valld when
the sensors have been placed on the fuselage where structural deformations are
negligible. In the cases In which elastic defomations are measured by the
sensors, a notch filter or washout filter is employed to "ourify'" the signal
such that It contains only ''rigid" alrplane motions.

Since some of the sensors to be used in the maximum 1ikelihood method
discussed herein, are placed at the extremes of wings, tails, and fuselages
to measure elastic distortions, the reorientation of the sensor axis from "jig
shape'' or ''runway shape'' to the 'reference shape'' may be Important, viz,, the
change in the wing dihedral angle that occurs on the B=52 and U-2. The
accepted definition of these elastic flight vehicle shapes should be recalled:

Jig: the shape of the vehicle supported by the construction jigs.

Runway: the shape of the vehicle on the runway at zero dyanmic pressure
and at some prescribed fuel and payload mass distribution.

Reference: the shape of the vehicle during the reference flight condi~
tion about which perturbation elastic deformation oceurs.

Cruise: the shape of the vehicle at its design mission operating condi-
tion; trim drag should be zero. Thus, the ''reference shape'' at
the cruise design point.

A sketch of the jig, runway, and reference shapes in Figure 2 indicates the
importance of precisely determining the initial orientation of the sensor
measurement axis and the reorientation of the sensor axis for the reference
flight condition.

In the most general cases, the instantaneous reorientation of the sensor
axis may be described by a time dependent, direction cosine transformation be-
tween the body-fixed mean axis and the sensor axis. For the case considered
herein, the reorientation is divided into (1) an initial time-independent re-
orientation from the installation shape to the reference shape and (2) a time-
dependent reorientation from the reference shape to the instantaneous shape
defined by the vectors 3 and § in equations (4). The time-dependent reorien-
tation is assumed small®compared to the initlal reorientation. Thus, the
direction cosine transform is time-independent and is written as:

tuiy = (Tl ey (5)
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where.%A; is a column vector of the ith sensor signal, expressed in terms of
the reference shape, sensor axis base vectors.
(T} is a matrix of the direction cosine or the angles between the base
vectors of the mean axis and the sensor axis system.
3;}is a column vector of the ith sensor signals, expressed in terms of
the mean axis base vectors consistent with equations (4).

The equations of motion for {‘d s, the air data system, the gyros, and
the accelerometers, that are consistent with the initial conditions of the

motion, follow from reference 4:

"o éi\r . éﬁr o f; Pi
{ Y 1] - |lo o o o O, Vop) + ?e;“' 9!:;
o o o & © Fop Oe;+0p;
&, © B DM BuMa T (vee B, 6)

T T
where itﬂ= [_'jrair data Y Euler angles HT Rate Gyro leaccelerometer_\

Op; is a vector of rotations due to the translational structural distor-
tions.

P is a vector of the translational elastic distortions.

e‘iis a vector of rotational elastic distortions.

— - v
i o0 0 By - Py
ol o .
-p, o ¥,
- o (=] / J‘ =1 -~ —_ E . .
qbv = ! P, = Poy 5y o disy
AT 2,7 By
Number ~Ly © B
O O [ | Sensors i By, - ?j o g:::::_

In the expression for &L, 2.;, r&i’ and Iﬁ; are the x, ¥ , and 2 distances of
the j th sensor from the center of rotation (assumed to be the center of mass).

As mentioned previously, only the accelerometer equations will be

selected to augment the vector, 3 , and to supplement the measurements of the
state. For this reason it is convenient to define and augment state vector,

X, as follows:
= [y an]

where the vector, 3 , is defined by equation (4) and the vector, a, can be
developed from the fourth row of equations (6) by specializing to symmetric

flight: T
a = La_}CA Arem Oy, [/ P all,, a{l_'—l
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Aresy = W + P;; & +99 (7a)
Qycm = W -P;6-Vé (7b)

In terms of invacuum modes, @, and the generalized coordinates, «,the
ay; and 4%; may be expressed as:

Ayj = utby;0+96+ g Puji Ui (7¢)
Aej = W-B;6-V6 +3 . (7d)

Here, @y and@,;; are directly related to #(¥,y2) in equation (1), provided the
accelerometers are ''placed" upon a lumped mass. In the event the accelerometer
are not placed upon a lumped mass, the individual elements in P may be inter-
polated to give &x;¢ and ®a;c - The assumption in using only accelerometers
to augment 3 is that the structure experiences structural rotational degrees of
freedom, Ge; , much smaller in magnitude than the translational degrees of
freedom, P - In the event this assumption is incorrect, rate gyro equations
may be required as additional equations to augment 3 .

Finally, the state equation for x may be written by combining equations
(k) and (7): , . 3
% = Cy xy + DS GJ Tl w2r, k=i)3c
Xi = e L5 4+2v+7 / ¢ 2r +2 4
Here, x is a vector[(q-'&Zr) + (22 )] X1 in size, & 1is defined as a vector
3cx/ insize and ¢ and p are:

c=[F'8i0] p=[Fa]

where @¢ is defined in equations (7).
MAXIMUM LIKELIHOOD METHOD

The methods used to estimate ?hg stability and control parameters of
rigid aircraft may be characterized !l ) as ''Equation Error', "Qutput Error",
and ''Advanced Non-linear'. The maximum likelihood metq?d falls into the latter
characterization along with the extended Kalman filter U9) . The advantages of
the advanced methods are that they can be applied to problems which contain
both process noise (turbulence-induced aircraft motions) and instrument noise.

The maximum 1ikelihood method has been selected for the analysis pre-
sented herein due to its prior success on 'rigid" aircraft. In addition, the
computer demands of the method serve to identify the areas of major flight
testing and computational difficulties prior to an expansion of the work effort
to other estimator methods. And finally, the maximum 1ikelihood formulation
reduces to a form of the Output Error method in the case of negligible process
nolse,
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The computational algorithm for ih? maximum 1ikelihood method is devel-
oped along the lines presented by Wells 3). other discussions of the method

may be Eou?d in the w?rkg of Mehra, Stepner, and Tyler(lh , Steinmetz and
Parrish{20)  and suitl2l).

As a first step in this method, the parameters to be estimated in
Equations (4) are identified. These aerodynamic parameters, first defined in
equations (2), are ordered to form the column vector of parameters, p :

T
PF = LcKo) C'Ku, C-"ou C-““) CKQ((("— ';""‘), st‘-((.:‘)'"c), C!&)

Cxa, Cxq Cxig (ist,-~r), Cx§;(i=he)) Cxi ((2h 1), Cxg, Goy-c),
Ca,,) C‘«, Cau, Ca.B y Caq (€¢=i,.-v), Cgsi(;‘:u,--c), Caa)r Ceg C,zz',

c;.;‘u..,.-,), Cag tian), Caiig (ot ), Cagy (ishenc), Coou ) c.,,,,c,,,v
C"'ui (126-),  Cng, (2, ) ) Cmin, Cmce, C"“i , Cmi; Ciztpeer), C_.-‘((,‘.,,..c))
Cmi; (ner), Cige (i=1,€), Curu Gztier), Cugy (021w, Cq,-1 (Ex,-w),

Cu‘.i“ (‘;;3';-—'), Cu."‘. ( (':',--')J'tl, ...(,' C“l.i (.’.,," '.)’ C“.'-" ‘l.=',-~P‘, (9)

C“i Ce -r), c':‘.a’ (caty=r)j2l=e] C“t’ii;((',/"l,--"), C“c‘k.; (-, f:l,-t-)J
m is the number of parameters, 3r+3rc+9c +I15v420,

* is the number of retained invacuum modes.
¢ is the number of control surfaces.

The elements of P are the familiar stability and control derivatives, plus some
unconventional aeroelastic derivatives that experience has shown to be impor-
tant in aeroelastic stability and control analyses.

Once the parameter vector is defined, the remainder of the algorithm
follows In six steps. Each of the steps is the result of extensive analytical
analysis that will only be summarized herein:

1. An initial estimate of P, defined to be P., is formed using the
data from experiment and analytical analyses. The values assigned
p- are used to calculate J ( p*), the performance function:

J) = det § & 2 Vi V)" ] (10)

Here, % (4{) s the innovation sequence:

Vi) = Yo ki) = H o xCp5 ) (1)
and Y (+;) are the measurements:
Yo (4) = T D) = T HX(L) + TNy (4:) (12)

where T is the general cosine transformation matrix for the sensors.
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H = [ " ‘4r1]
H'll l'( kA N

Hy = I , 4x4 Hzy, =0 , 24 x (4+2v)
O) "—X(ZV‘+21) “17_-: I, ZA X2

N\, is instrument measurement noise having the expectancy properties
E iy =0
T
E {nttdnugyl = RSy

where R is the covariance matrix of measurement noise and quis the
familiar Kronecker delta function:
v

R: © 3 Vi) ve) (13)

Czh
X (P3+f) is the value of R obtained from integrating equations (8) for
p=p

2. The value of x (P, t{) is compared to available measurements, Y.(+i).
Usually, the agreement is ''poor''.

3. Assuming the first fit is poor, the initial estimate of p is up-
dated to

B = P"’ N [%: AT(&) R"A({:)]"[é A R (4]

(el (llla)
The rectangular matrix A is the sensitivity matrix:
AT = P_}T b_ﬂ] (14b)
Eld 4

whose elements are determined by the sensitivity equations, formed
from a solution of differential equations obtained by taking the
partial of equations (8) with respect to p:

dr¥yy\_ =~ 2 G - -
Z(3)= = 3G YT [F () TBrren) ane
20 - &
Sp  oP (14d)
with the initial conditions
211' -~ O ) ')ll\‘ =0
>Pf )P).



L. The new estimate of P is used to determine an updated value for
X (Pr*i) by again Integrating equations (8) with p defined by B .

5. Again, a value of J (S) is determined from equation (10) and
compared to the previous estimate, J ( P').

6. I|f the values of -J (P) and J(F) do not agree with some criteria,
the process in steps 1. thru 5. is repeated untll convergence
(or divergence) is Indicated.

PROBLEMS OF COMPUTATION AND APPLICATION

The development of a parameter estimation method for elastic flight
vehicles Is recognized to be a high payoff venture. However, It is also
recognized to be a high risk venture due to the lack of previous experience
with the computation and application problems involved In elastic alrcraft
parameter estimation. For thls reason, the solution of the problems will
first be attempted as a Flight Dynamics Laboratory In-house analytical effort.
Once satisfactory results are obtained from analytical test cases created by
the FLEXSTAB/CCVMOD computer programs, the work effort will be expanded. The
computer program being developed has been given the acronym FLEXFLT.

fo date, six problems of computation and application have been ldenti-
fied. Three of these problems would be experienced by any parameter esti -
mation procedure:

e Availability of the direction cosine transformation matrix, T, in
equation (10).

e Excitation of all the states of X in equation (8).

e Determination of the optimum number, type, and location of sensors on
the aircraft.

The other three problems are somewhat unique to the maximum 1likelihood method:
e The absence of realistic start-up data for £ In equation (1ka).

e The inversion of large and possibly ill-conditioned matrices in
equation (14a).

e The integration of a large number of state and sensitivity equations
in equations (8) and (lk4c) and (14d).

Subsequent paragraphs in this section of the paper describe the approach to be
followed during the in-house study. As will be noted, the study makes maximum

usage of the experiences galined during past studies on the estimation of
parameters of ''rigid' aircraft.

The first problem, the calculation of T in equation (10), can be solved
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using the combined output data of the NASTRAN and the FLEXSTAB/CCVMOD Computer
Program Systems. Other less precise calculations of T are possible from
FLEXSTAB/CCVMOD alone, provided only dihedral angle changes and aerodynami -
cally significant rotations are of Interest SinceT is in part a function of
P, an iterative cycle between FLEXFLT and FLEXSTAB/CCVMOD may be required

for some applications. For expendiency in this restricted in-house effort, T
will be assumed to be a diagonal unity matrix.

The excitation of the body-fixed axis motions and important elastic
deformations is essential if the signal to noise ratio is to be large enough
for optimum parameter extraction from the flight test data. This can be
assured by careful selection of precision instrumentation and by well-planned
flight tests. In the event a particular motion is not excited, its parameters
will be deleted from P and from equations (7) and (14) by the FLEXFLT user
since the aerodynamics of an unexcitable mode would be of little interest in
the FCS design.

The third problem, the determination of the optimum number, type, and
location of sensors, has plagued the methods developed for 'rigid" aircraft.
The inclusion of aeroelasticity effects could conceivably either complicate or
alleviate the problem. The complication introduced us the requirement for a
larger number of sensors. The alleviation introduced is a more precise
representation of the sensor signals in equations (6). Figure 3 presents a
fraction of the total number of sensors on the B-52E. The type and location
of these sensors is nearly adequate for the first flight test applications of
FLEXFLT. With these thoughts in mind, the in-house study assumes that proper
air data sensors, rate gyros, and accelerometer measurements are now available.
These available sensor signals will first be approximated with similar-type
sensor signals which have been analytically created by the FLEXSTAB/CCVMOD
programs. Prior to applying the FLEXFLT program to actual flight data, the
analytical test cases will be corrupted with instrumentation noise and bias to
provide insight into the difficult flight test problems.

The absence of realistic start-up data for P° in equations (10) and
(1ha) poses a difficult computational problem. Many of the parameters defined
in equation (9) may be of small magnitude, difficult to estimate analytically,
and impossible to measure experimentally during wind tunnel tests of "rigid"
and elastic models of the flight vehicle. Fortunately most of the parameters
of importance are calculated analytically by the FLEXSTAB/CCVMOD programs and
other advanced stability and control programs. Also, the MODAL TRUNCATION
formulation of the dynamics allows direct inclusions of the available wind
tunnel measurements of ''rigid' airplane stability and control derivatives.
The in-house study will begin by using altered values of the parameters that
will be used by FLEXSTAB/CCVMOD to generate the analytical sensor signals
mentioned in the previous paragraph. This approach may also prove to be
feasible during actual flight test applications of FLEXFLT, although simple
estimation methods may also prove of value in estimating pe -

The fifth problem, the inversion of large and possibly ill-conditioned
matrices in equation (lka), is a major computational difficulty. The size of

352



R in equation (1ka) is (442r+2L) square. For the case of 3 retained invac-
uum modes (t=3) and 12 accelerometers (2&=12), the size of R is 22x22. A
matrix this size may be easily inverted, provided it is properly condi tioned.
In the event it is nearly singular, the in-house study will employ the approx-
imate inverse methods used by Callahan (22). In inversion of the matrix

[ T AW) R ALY ] is more ditficult since +his matrix has the dimensions of
mam. The magnitude of M is 3vr*i3rec +9c +15¢ +20 , where < s the number
control surfaces. For the previous example, and for 5 control surfaces, m is
182. The inversion of a 182x182 matrix is routinely accomplished in aero-
elastic stability and control computations, provided the matrix is well-condi~-
tioned. The in-house study will begin the checkout of FLEXFLT with restricted
analytical test cases in which the derivatives associated with 8¢ and W; , are
eliminated. These two simplifications reduce m to a value of 134 in the
illustrative example. If necessary, further reductions will be employed to
bring m to the order of 80 as in the analyses described in reference 22.

The time-wise integration of a large number of state equations and
sensitivity equations is another major computational problem of FLEXFLT. The
number of state equations is (Y42v). Using the previous illustrative example,
the state equations number only 10. However, the number of sensitivity
equations to be integrated is immense. Again, for the example cited, the number
is (M) (442¥) or 1820. Reducing m to the order of 80 reduces the number of
sensitivity equations to 800, still a significant computer programming task to
say the least! Fortunately these are linear, first order equations and the
programming work is only tedious. Currently, the in-house study described in
reference 22 integrates 545 sensitivity equations for 33/39 , using a first
order prediction method characterized as the "Adams-Bachford backwards
difference method''. This will be the method used in the initial FLEXFLT studies.

CLOSING COMMENTS

The dependence of the USAF on flight vehicle prototypes requires an
accurate and timely evaluation of the flight test data from the prototype
prior to a committment of resources to a production vehicle. The trend toward
higher-performance, lighter-weight vehicles introduces complex aeroelastic
phenomena that can contribute significant problems to vehicle design. At
present, the stability and control parameter estimation methods available
treat only the simplest of aeroelastic phenomena (QUASI STATIC) and even then,
require an accurate analytical method to estimate aeroelastic corrections to
the ''rigid" airplane stability and control derivatives. Thus, a high payoff
in terms of a realistic evaluation of the prototype vehicles, and in terms of
a reliable method to identify the sources of troublesome stability and control
problems of the prototype vehicles, can be gained with an elastic parameter
estimation method.

This paper presents a maximum likelihood algorithm that will estimate
the aerodynamic stability and control parameters of a flexible flight vehicle
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experiencing small perturbation longitudinal motlions from a symmetric, steady,
non-rotating, wings level, Inltlal flight condition. The computer program
being developed to use the algorithm Is named FLEXFLT. The initial feas]-
bility study reported herein Indicates the two major computational problems to
be overcome are the inversion of a large sized matrix (possibly I11-condl tioned)
and the time-wise Integration of a large number of sensitivity equations.

It s usually the case, high payoff in research and development also
Implies a risk. The risk is that computational problems Involved In mechani-
zing the maximum 1ikellhood parameter estimation method on a digital computer
may be too difficult to overcome. To date this does not appear to be the case,
although analytical test cases from FLEXSTAB/CCVMOD and experimental test cases
from the B-52 CCV program have not been analyzed. The dollar cost of the risk
is minimized thru the emphasis placed upon an in-house effort by the Flight
Dynamics Laboratory prior to an extensive contractor effort. The key element
fn minimizing the risk to achlieve the high payoff is the FLEXSTAB/CCVMOD
computer programs that will be used to create sophisticated analytical test
cases for FLEXFLT.
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ESTIMATION OF STRUCTURAL PARAMETERS
FROM DYNAMIC TEST DATA

B. M. Hall
Branch Chief, Flight Control Systems

and

M. S. Sholar
Senior Staff Engineer, Flight Control Systems
McDonnell Douglas Astronautics Company — West
McDonnell Douglas Corporation

ABSTRACT

Parameters for a lumped linear model approximating a distributed elastic
structure are determined from dynamic test data comprised of several
mode shapes and frequencies. Measurement errors, nonlinear response,
and nonmeasurable quantities such as mode slope components are
accommodated. Some mass and stiffness parameters may be known
accurately, whereas the remainder are to be estimated. The method entails
minimizing a quadratic function of the difference between corresponding
modes and frequencies of the theoretical model and the test specimen.
This technique has been applied to some actual vibration test data, and
the special techniques that are required to overcome convergence
problems are described.
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INTRODUCTION

Ground vibration tests are performed on nearly every aerospace vehicle which has a control system
or' which may tend to exhibit aeroelastic instabilities such as flutter. The process of performing
these tests has presented formidable experimental problems for many years. Among the problems
which present themselves to the test engineer are those of exciting normal modes of the structure
and dealing with the presence of ground restraints which create boundary conditions not
representative of flight. Another inherent problem which prevents the measurement of the normal
modes of an undamped structure is the fact that the structure, indeed, has distributed damping.
This causes bothersome phase shifts in the experimental data and makes the excitation and
measurement task that much more difficult. Since the ultimate use of the data from the vibration
test is to serve as inputs to a dynamic or static modal analysis, it is necessary to examine the manner
in which the data are used, and to see if better analytical techniques can be devised to use the data
which come from the vibration test. Of particular importance when considering this problem is the
fact that the resulting analysis will be performed on the vehicle in some flight condition which is
considerably removed from the boundary conditions which exist during the vibration test. This is
true for the airplane which is tested on its landing gear; the missile which is tested horizontally in a
sling; and particularly true for the spacecraft which is tested in the atmosphere at 1g. In all of these
cases, the vehicle must be free of sloshing fluids in order to excite the orthogonal structural modes.

In view of these restrictive test conditions, one may then conclude that the basic reasons for
performing the test are (1) to verify the analytical predictions of the behavior of the structure in the
test environment, and (2) refine the math model of the vehicle. This problem, which is essentially
that of estimating the vehicle structural parameters from test data, was addressed by the authors
several years ago (Reference 1). The method suggested in this original work has since been applied
by the authors as well as others at different aerospace companies. These subsequent applications
have met with varying degrees of success. The purpose of this paper is to present some additional
techniques for the parameter estimation method and to show an application to a typical missile
vibration test,

DEFINITION OF THE VEHICLE MATH MODEL

A detailed description of the general lumped parameter model of the vehicle is given in Reference 1,
Essentially, the model consists of a linear structure, with lumped mass and stiffness characteristics
described by mass and spring matrices. It is assumed that the mass data are known without error,
and that structural stiffness only needs to be estimated.

It is assumed that the structure has undergone a vibration test and that the mode shapes and
frequencies, which characterize the unknown stiffnesses, have been measured. These data contain
measurement errors as well as noise. It should be pointed out that it is practical to measure only a
few of the infinite number of modes characteristic of a continuous structure.

The problem then is to choose a lumped mass model for the system and estimate the stiffness for
this model which yields modes giving the best agreement between the model modes and the
experimental modes,
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THE PARAMETER ESTIMATION TECHNIQUE

The following method finds the linear model having certain modes and frequencies which are as
close as possible in a weighted least squares sense to the corresponding experimental modes and
frequencies. This is achieved by minimizing a quadratic cost function of the following form:

N, N,
F=12Y (X - X! Wi(Xje — Xi) + 1/2 Z (wl — W) (1
=1

Where Xq is the jth experimental mode, an nxl vector normalized such that
ie ie 2
Xt is the ith theoretical mode (eigenvector), an nxl vector normalized with respect to spring matrix,

K

th

W; is an nxn symmetric positive semidefinite weighting matrix of the i~ mode error

th

w?, is the i

ie experimental eigenvalue

wizt is the theoretical eigenvalue
N, is the number of eigenvectors to be considered
N, is the number of eigenvalues to be considered

In this formulation, it is assumed that all elements of the mass matrix (M) are known and the
elements of the stiffness matrix (K) are to be determined. The K matrix is taken to be comprised of
unknown parameters which occur as linear factors. An expression for K after Rubin (Reference 2) is

n .
— i
+ Z% kK (2)
J:

where the k are the scalar parameters of the system which are to be determined, K is the known
portion of the matrix, and the KJ are matrices locating the k in correct positions according to the
model and its boundary conditions.

The eigenproblem defining the theoretical modes and frequencies is
K - Wi M]X; =0 (3
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The normalization of the theoretical modes is chosen with respect to the K matrix such that

T _
XitKX;¢ = §;;
T ]
X MX;, = === 5. (4)
tMXjt = —
i i W ij

5 1 i=j
Uolo i=j

The experimental modes will not be orthogonal with respect to the mass matrix in general due to
errors. The major sources of error are (1) lumping the mass distribution of a continuous structure,
(2) errors in the estimate of the mass data, (3) distributed damping in the structure, and (4) errors
in mode measurement and data reduction. However, in order to compare them in the cost function
with the theoretical modes, they are normalized by requiring that

T 1
X oMX:, = — (5)
ie e ’ize

The global minimization of Equation 1 is effected over the parameter space of the kj by a modified
Newton Raphson technique which makes use of analytically derived first derivatives and
numerically determined second derivatives, The minimization procedure is constrained to positive
values for physical realizability. The first derivatives of F with respect to kj are

N, ax.. N, deo?

oF _ T it Wit

a; ,Zl Kit = Xie) Wi -+ Z; (o - wfe)—dkj (6)
1= 1=

The derivatives of the eigenvectors and eigenvalues in Equation 6 for M fixed and normalization
with respect to K are

2 T i
dwit  Xjr K’ X4

= (7)

EREATE
T i
X, N X, K X -
d L= Y IT(t « Xy — 172 (X}, K! Xit) Xt (8)
i k=1 WA Xy, M Xe, — 1
L Wi Akt M Xy
ki

which corresponds to the second formulation in Fox and Kapoor (Reference 3).
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The Hessian matrix of second derivatives is approximated numerically at a point Kjo 1n the
parameter space from finite differences of the gradient vectors evaluated at kj = Kj, * & using
Equations 6, 7, and 8. This procedure requires solving for both eigenvalues and eigenvectors at each
incremented point since they are required for evaluation of the first derivatives.

The modified Newton Raphson procedure for iterating the design vector _]g(n) is given in Equation 9
where K(n) is a column vector of the kj parameters at the nth iteration.

(n) (n)
_l_(_(n+1) = L(.(n) _ C[H"l] (WF> (9)

(n)
[H—l] is the inverse of the Hessian matrix evaluated at the nth iteration.
(n) th
(%F) is the gradient vector at the n™" iteration
¢ is a step-size control parameter chosen for convergence and satisfaction of constraints

The set of equations contained in this section completes the formal mathematical description of the
minimization process. Given enough computer time, patience, and, hopefully, good experimental
data, one could presumably crank through the repetitive operations and find the design vector of
stiffnesses which would describe that linear lumped model which best describes the real physical
system. As with all processes of this type, there are many formidable problems which lie in the path
of achieving a converged solution to a problem with a rather simple concept. Some of the
roadblocks encountered and procedures for dealing with them follow.

SYSTEM RESTRAINTS

The basic restraint to be considered is that of guaranteeing that the k design vector will, when
subtracted from the basic value of the appropriate term of the spring matrix, yield a realizable
physical stiffness (Equation 2). For example, if one is working with a bending beam, the elements
of K are linear functions of the beam bending stiffness EI. The restraint in this case is that the EI
cannot go negative.

CONVERGENCE

Assuring convergence to the desired answer is a more difficult problem, and one that requires cut
and try methods. One of the most valuable methods for speeding convergence was developed while
working on a particular problem. This method can be compared to the multilevel optimization
technique used in trajectory optimization. In this case the multilevel technique consists of lumping
some of the elements of the design vector together, and restraining these to vary from their initial
values as a unit. For example, if one is working with a bending beam of 30 sections, he might lump
together sections over which the stiffness is relatively constant. If he does this for several groupings
of, say, 4 sections each, he has reduced the degrees of freedom from 30 to maybe 7. Convergence is
speeded and, after achieving a minimum for the course lumping, one can now release one or more of
the restrained sections and again solve the minimization problem.
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There is an important point to be noted when applying this technique. When subdividing the
structure into a lumped model, the number of segments is chosen on the basis of that subdivision
which is required to compute accurate mode shapes and frequencies independently of the parameter
estimation process. This may require that a segment of a missile booster or airplane fuselage will be
divided into several sections even though the stiffness is known to be constant over the segment.
For this case, one would constrain these segments to move together throughout the entire
minimization process; because, to allow one section to have a final value different from a
neighboring section is physically not possible,

In examining the convergence process, one must necessarily consider the question of local minima,
and the existence of a global minimum. For this type of problem, the search for the global
minimum over the entire permissible parameter space is not so important. First of all, we are
working with noisy and inaccurate vibration test data; hence, an error function equal to zero does
not exist, In fact, the whole scale of the error function is shifted by the choice of weighting factors
alone. Also, the global minimum, if one were fortunate enough to find it, might lead to an
unrealistic stiffness distribution. We must be content then with locating the best minima we can
find which yields a reasonable design vector. This search narrows to that of the structural analyst,
who has a complete knowledge of the structure, interacting with the computer program in order to
find the best answer.

THE WEIGHTING FUNCTION

The weighting function serves two basic purposes. The first is to provide dimensionality consistency
between the eigenvalues and eigenvectors in the error function; the second is to weight the
experimental data relative to the errors which are known to exist in the experimental data. For
instance, the higher frequency modes or closely coupled modes are frequently difficult to excite. In
these cases, one would weight the test data lower than the data from the more easily excited modes.
For the purpose of providing dimensional consistency, it has been found that the following
procedure suffices. Referring to Equation 1, each element of the theoretical eigenvector is divided
by the maximum value element of the experimental eigenvector.,

A similar procedure is adopted for the eigenvalues. For this case, the square of each theoretical
eigenvalue is divided by the square of each corresponding experimental eigenvalue,

In addition to normalization, one must consider the weighting or emphasis to be given to each
mode, As mentioned before, this will vary depending on the particular case under consideration,
For the purpose of the example presented later on in this paper, the weighting matrix is chosen to
give each mode equal weight. When both the normalization and equal mode weighting are
combined, the final error function of Equation 1 becomes

1 Tri T M, w?
F=5{XeE - xrr] [1-3' Xie — Xir| + [xzs - er] M, wl13 [XzE - sz]

T Mx‘*’% W%‘l ’ W?rz j w%a :
+ x — x } —— [x _ x ] + 1 — + 1 — + l —
[ 3E T Myw?13 (7 3T wy w;.;!, w];!a

(10)
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TYPICAL MISSILE BENDING PROBLEM

In the previous paper (Reference 1), some simple examples were presented in order to show how
the process works, and to make an assessment of the convergence problems which might arise when
actual test data are used. These simple examples were based on a free-free beam of varying mass and
stiffness. Computer runs were made in order to determine the effect on the process due to the lack
of measured slope data, and to assess the convergence process when the experimental data contains
measurement errors. The results of these computer runs showed that the process did converge, and a
best linear model was generated from each case.

In the present example, a typical missile structure is investigated. This structure has vibration data
associated with it and therefore constitutes a very real case that one might encounter in practice.
The first three experimental missile mode shapes and frequencies are shown in Figure 1.

Using these mode shapes and frequencies in tabulated form, along with the mode shapes and
frequencies derived from the initial estimate of the stiffness, one can form the error function and
begin the minimization procedure using Equations 1 through 10. Thirteen elastic sections are
chosen for the math model describing this actual continuous structure., The number of sections
chosen for the elastic model is a compromise between the number of sections required to avoid
errors due to lumping of the continuous structure and to avoid an excessive number of sections,
which greatly increases computer time. For this typical structure, 13 elastic sections are chosen in
order to give reasonable definition to the first 3 bending modes. Because of the constant cross

1.0G

- (@ 1ST BENDING 19 HZ
0.5 (@ 2ND BENDING 42 HZ
- ® (3 3RD BENDING 59 HZ

0.2—@

NORMALIZED DEFLECTION
T

- MISSILE STATION

Figure 1. Missile Mode Shapes
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section properties over portions of this structure, the following sections must have the same
stiffness in the final 13-section math model: Sections 1 and 2;3and 4; 5 and 6; and 7, 8, and 9.
Section 12 has elastic characteristics determined by other means and the k associated with this
section will remain at unity.

The results of the multilevel minimization procedure are shown in Table 1. This table shows the k
scalar parameters, along with the value of the error function F. Each level of minimization is hsted
vertically. Starting with the first grouping, it will be noted that all kJ are unity, which means we are
assuming as our first estimation the computed bending stiffness of the missile, The actual value of F
is not so important; what is important is how much one can reduce F as the stiffness parameters k
are varied. This first grouping required 9 iterations to converge and the value of the error functlon
was reduced from 0.0211228 to 0.00877676. Using the converged values of the k s to start the
next grouping, and freeing section 11 to seek a new value, 14 iterations were requlred to further
reduce the error function to 0.00518092. For the next grouping, section 13 was allowed to seek a
new value. This final group converged in 4 iterations to an error function value of 0.00517841. As
pointed out before, the absolute value of this error function is not important. What is important is
that the k s have converged, and the stiffness of the lumped model has been determined.

Table 1

TABULATED RESULTS

SECTION 1 2 3 . 5 6 7 8 8 10 1 12 13
ERROR
FUNCTION
1FF
§.§m"§’“‘ kq k2 k3 kg kg kg k7 kg kg k1o k11 k2 k13
GROUP
RESTRAINED TO UNITY
v wmad] 4 11 11 f ¥ ki f
1.0000 | 1.0000 | 1.0000 |1.0000 | 1.0000 | 1.0000 | 1.0000 |1.0000 |1.0000 |1.0000 | 1.0000 1.0000 1.0000 || 0.0211220
FINAL
12063 | 1.2063 | 0.98202 | 0.98282 | 1.1484 | 1.1484 |0.76012.| 0.76012 | 0.76012] 0.10630 | 1.0000 1.0000 1.0000 || 0.00877678
- ' '_—' '——' RESTRAINED
2 INITIAL —_' ' ’ ' '
1.2083 | 1.2963 | 0.98292 | 0.98292 | 1.1484 | 1.1484 |0.76012 | 0.76012 | 0.76012 | 0.10630 | 1.0000 1.0000 1.0000 || 0.00877678
FINAL 1 14857 | 14567 | 081303 | 001203 | 1.4608 | 1.0688 | 077703 | 0.77703 | 0.77703 0.78233 | 0.20021 1.0000 1.0000 || 0.00518082
'——' f } f ] 3 [} RESTRAINED
3 | IMTIAL |y 4657 | 14557 |0.89303 | 0.81303| 1.4698 | 14688 | 0.77703| 077703 | 077703 | 078233 | 0.20021 1.0000 1.0000 || 0.00518092
FINAL | 1565 | 14565 001415 | 081415 | 14716 | 14716 | 097307 | 077307 | 077307 | 077834 | 019900 |  1.0000 14087 || 0.00517841
CONCLUSION

A method for determining the parameters of a linear structural model from dynamic test data has
been presented. A typical problem involving experimental data from a bending missile has been
solved using the technique described in this paper. The solution shows that the technique is indeed a
practical one. Because of the requirements for grouping the elastic sections during the minimization
process, a good deal of judgment and foresight are required. Other problems, including that of large
computer times, will undoubtedly be encountered as one applies this technique to more complex
structures requiring many more modes for definition.
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DETERMINATION OF PROPULSION-SYSTEM-INDUCED FORCES
AND MOMENTS OF A MACH 3 CRUISE AIRCRAFT

Glenn B. Gilyard
NASA Flight Research Center

ABSTRACT

The YF-12 airplane (fig. 1) is an advanced, twin-engined, delta-wing inter-
ceptor designed for long-range cruise at greater than Mach 3 and at altitudes above
21,336 meters (70,000 feet).

During the joint NASA/USAF flight research program with the YF-12 airplane,
the Dutch roll damping was found to be much less during automatic inlet operation
than during fixed inlet operation at Mach numbers greater than 2.5 and with the
yaw stability augmentation system off. This significant reduction in Dutch roll
damping is due to the forces and moments induced by the variable-geometry
features of the inlet. Two stability-derivative extraction techniques were applied
to the flight data—the recently developed modified Newton-Raphson technique
(ref. 1) and the time vector method (ref. 2). These techniques made it possible to
determine the forces and moments generated by spike and bypass door movement.

For efficient supersonic propulsive operation, the terminal shock (fig. 2) must
be maintained in the inlet aft of the throat at an optimum position that is primarily
a function of sideslip in a short-duration lateral-directional maneuver. A fast-
acting fine control of normal shock position is provided by the forward bypass
doors, which are positioned around the circumference of the front part of each
nacelle. These doors regulate the amount of air that is expelled from the nacelle
before it reaches the engines.

Two rudder-pulse maneuvers (fig. 3) were analyzed to determine airframe,
propulsion system interactions. The first maneuver was performed with automatic
operation of the inlets, which resulted in a divergent Dutch roll oscillation, whereas
the second maneuver was performed with the inlets fixed and was stable.

In both the Newton-Raphson and time vector analyses, the forces and moments
produced by inlet spike and forward bypass door position variations were deter-
mined as derivative coefficients and hence were considered as additional control
variables in the equations of motion. It was assumed that the effect of bypass door
position in the inlets-automatic maneuver was the same for both inlets, thus the
right- and left-hand bypass door deflections could be combined. This combined
parameter was denoted by 7, and defined as the right-hand bypass door deflection
minus the left-hand bypass door deflection.
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The three variables used in the analysis were roll rate, yaw rate, and lateral
acceleration. The sideslip parameter had a significant pneumatic lag.

The basic principle of the Newton-Raphson method is to minimize deviations
between flight and calculated time histories of airplane responses to control inputs.
The method can be used to determine all stability and control derivatives from a
minimum of aircraft response variables.

The maneuvers with the inlets in the fixed and the automatic modes were
matched simultaneously, thereby yielding one set of stability and control deriva-
tives, including those of the forward bypass doors, which satisfied both maneuvers.

Figure 4 compares flight time histories and time histories calculated from the
derivatives determined with the Newton-Raphson technique for inlets-automatic and
inlets-fixed operation. The derivative results provide a good match with the flight
data.

The time vector technique defines the derivatives explicitly in terms of meas-
ured frequency, damping, amplitude, and phase relations. The measurements of
the two maneuvers are used simultaneously in the analysis to compute one set of
stability and control derivatives. The time vector method as used is described in
detail in reference 2.

Derivatives determined by using the two techniques are compared in figure 5.
The bypass door derivatives, L 7 Nn, and YTI’ show good agreement. The
remaining major stability derivatives also agree well.

The net effect of bypass doors with the inlets in the automatic mode increases
the directional static stability by 40 percent and changes the effective dihedral from
positive to negative, as shown in figure 6. Furthermore, the control effectiveness
of the bypass doors is approximately the same as the control derivatives N s and

r
Ls when compared in terms of percent of control available (fig. 7).
a

Comparison of the flight-measured and calculated sideslip angles of figure 4
reveals a sideslip system lag of approximately 0.5 second. A closed-loop stability
analysis (ref. 3) shows that the lagged sideslip input to the inlet computer is re-
sponsible for the divergent Dutch roll oscillation.

A more complete analysis of the airframe/propulsion system interaction phenom-
enon is presented in reference 3.
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SYSTEMS IDENTIFICATION - REPRISE AND PROJE CTIONS

Lawrence W. Taylor, Jr.
NASA Langley Research Center

If systems identification is considered in the broadest sense to encompass all
modeling activities, including those of describing observed phenomena by some 'law, "
then systems identification is a fundamental part of obtaining knowledge of any physical
system. If restricted to '"laws" expressed in mathematical terms, perhaps the best
modeler of dynamic systems was Sir Isaac Newton. Looking at figure 1, one can see
that Newton not only extended Kepler's empirical laws of motion to the universal laws
of motion which carry his name but also founded calculus. In addition, he devised the
iterative method of obtaining roots, Newton's method, which is widely used today in
systems identification. Another giant was Gauss who first solved the least squares
problem and contributed the important Gauss or normal probability distribution. Next
it was Fisher who contributed the maximum likelihood estimate, and Weiner, Komogorov,
Swerling, and Kalman who have made important contributions to our understanding of
stochastic estimation. An equally important contribution has been the development of
automatic data processing. Von Neuman was instrumental in the early development of
the electronic digital computer. This brief sketch is not in any way complete or fair
to those making as important contributions to systems identification in other fields such
as physics, chemistry, and electronics, but is meant only to give some perspective to
the time over which contributions to systems identification have been made.

Another important aspect of systems identification is the rapidly increasing number
of applications of the modeling techniques being made. Figure 2 depicts several of the
areas of application: astronomy, maneuvering target identification, aircraft dynamics,
gravitational fields, stock market, physiological systems, pilot tracking, adaptive
control, process control, production testing, econometrics, psychological behavior,
system checkout, and structural dynamics. There are, of course, more areas to which
systems identification techniques are being applied. The wide use of modeling techniques
points to their importance and usefulness beyond that of determining stability derivatives
of airplanes.

Having considered the past contributors and current applications, let us turn to the
future of systems identification. The reason for the question mark of figure 3 is that to
a large degree the future of systems identification is up to us and others like us. In
order to make the greatest use of any improvements of modeling techniques, it is impor-
tant that we substantiate our claims and make full reference to related work as we
report our work. We need to communicate more with analysts in other fields who are
using systems identification techniques so that unnecessary duplication of effort is
reduced and there is a free flow of ideas.
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In trying to make a projection into the future of systems identification, I believe
directions are clear. First, there will be a continuation of the increased number of
considerations given in formulating the systems identification problems, that is, fit
error, measurement noise, likelihood, a priori information, input design, and adapt-
ive control. Another thrust that will be possibly even more productive is the greatly
increased amount of data processed. This will give impetus to more efficient algo-~
rithms and data processing systems. Automatic editing of the data will be necessary
because the current visual checks on data validity will be too costly. Other advances
will be made, of course, which cannot be foreseen, but it is certain that the immediate
future of systems identification is one of growing importance and growing interest.

In conclusion, it is up to each of us to strive to replace the question mark of the

future with meaningful results, whether our job deals with theory or application or the
funding of these endeavors.
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Figure 3. Future of systems identification.
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SOME AFTER-DINNER REFLECTIONS ON SYSTEM IDENTIFICATION+

By A. V. Balakrishnan

Department of System Science
University of California
Los Angeles, California 90024

It's a great pleasure for me to be here today. I consider it a very
great privilege to be able to participate in this symposium even in a ceremo-
nial role as an after-dinner speaker. I am happy to be here because not only
is this a very timely conference, as witness the large number of people here,
but I have no doubt that this will be a watershed in the history of aircraft para-
meter identification, reflecting the first serious attempt to relate identifica-
tion theory to practice, But, above all, I am happy to be here because it
gives me a chance to acknowledge publicly the important, even crucial role
played by the Flight Research Center in this whole area. I think this very
symposium is evidence of the foresight and understanding by the Center and by
Dr. Rediess because I know how hard it is to arrange a symposium in an area
so totally unglamorous and dull as compared to the many other activities of the
Center. In fact, I can see it is very difficult to explain to the general public
just what it is that we do.

I owe my own personal start in System Identification to this Center. In 1963,

I think it was, I had presented a paper at an obscure conference at Princeton
University, on identifying a nonlinear system from input-output data using
Volterra series - (as you know, this is only a fancy name for polynomials
which you have already heard about so much today), and a gradient technique.
By a happy coincidence it was noticed by a brilliant 'scientist' from the Center
who happened by chance to take one of my classes. He saw in it an application
to (what appears to me to be the perennial) problem of identifying human oper-
ators, and which I am sure is familiar to most of you and certainly still very
much with us, and thus I was introduced to the world of aircraft identification
problems. I am speaking of course of Mr, L., W, Taylor who is more famous
and better known to you than I am. Larry's problems were always very chal-
lenging and since that time have guided almost all my research efforts in
stochastic control. Itwas Larry also who saw the importance of second order
methods - the modification of the Newton-Raphson method, which I had sug
gested in an obscure part of an unreadable tome on communication theory. In
Larry's hand it became an extremely useful tool, so useful that I suggest that
since the whole name is inapplicable anyway, be named Newton-Raphson-
Taylor method. In this way, everybody will think you are talking about the
Taylor of Taylor series and since Raphson didn't reportedly have anything to
do with it either anyway, it would be very appropriate.

+ . . . .
Edited version of a tape transcription of the after-dinner talk.
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Now by 1965 to 1967 the interest in identification problems had grown
very large indeed; in fact, the International Federation of Automatic Control
began a series of tri-annual symposia dedicated only to system identification.
The first one was held in Prague, Czechoslovakia in '67, and the second also
in Prague in 1970, and the latest one as you know, to be in Holland in 1973.
The symposia were quite useful, especially the first one in 1967 that was held
in Czechoslovakia because there was a large participation from East Europe
and the USSR as well as the other smaller communist countries, and I can well
remember a paper from Cuba on sugar refineries, identifying sugar refinery
plants. I think that in looking over the symposia you could see a gradual pro-
gress from '64 to '67, and from '67 to '70 it is more or less steady state. In
'67 there was only a trickling of papers on least squares and transfer functions,
but by that time you could discern three or four groups across the world who
were doing serious work., Of course I will omit references to the U.S. work
because this work, in the first place is known to you and in any case, there
are too many experts right here in the audience with you, Perhaps the most
noticed work was the work of Karl J. Astrom who had apparently worked on
identification problems for a paper mill in Sweden with the aid of IBM, and he
based his work for the first time on a linear difference equation model and
standard statistical estimation theory including an asymptotic theory of con-
sistency (his proof unfortunately turned out to be incorrect!). The British
under Professor Hammond, with typical British thoroughness and emphasis
on practicality were exploiting weighting patterns and using pseudo random
inputs. More recently, the Imperial College in London under Professor
Westcott has been applying identification techniques to steel mills. Professor
Eykhoff in Holland was interested in application to biomedical engineering, an
area which is truly enormous in scope and difficult to ascertain the impact.

In some contrast to all of this, was the work of Dr. Rajbman from the USSR
from the Central Institute of Control Problems in Moscow, based on an earlier
theory of pugachev with considerable application to metallurgical problems.,
The work in Czechoslovakia under Dr. Peterka was on an even more practical
turn, using difference equation models with application to steam boiler plants,
etc. There was hardly any work at all reported on aircraft parameter identi-
fication from any country, and little or no work on continuous-time models.

I hope this gives you some idea of the mainstream of the activity across
the world, since my intent here is far from any kind of survey. It was quite
clear any way that nowhere else in the world was there any large-scale attempt
at using computerized parameter identification techniques. So if we are be-
hind, the rest of the world is farther behind. The literature on identification
is quite large, At the 1973 symposium over 300 papers were submitted and
100 or so were eventually selected for presentation. If you think today's ses-
sions were crowded, they are having sessions with all ten-minute presenta-
tions. Now it's quite understandable perusing the thick volumes of proceed-
ings that the potential user is bewildered by the variety of techniques and
claims. Most papers follow a canonical pattern roughly like this: they will do
some mathematics with some techniques based on some model, often making
ad hoc simplification because the total problem is too complex and then pre-
sent a technique which they claim 'works' and by way of justification, some-
times a computer simulation of sorts is thrown in. There is a whole philoso-
phical question here as to just what the author has proven by this exercise!
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Nowhere is there at any time any use of actual data, and of course no informa-
tion at all about what the customer or the actual data user thought of it or did
with it, It is of course, in view of this, understandable when Dr. Queijo, for
example, once remarked to me that it appeared to him that by properly
massaging the data, you can produce any number you want, Now whereas in
the usual engineering design problems, analysis usually need not be precise
because the final design has to be experimental anyhow, and you can test
whether the motor works or not by actually constructing it; the situat on is
quite different in identification since you don't know what the answers are that
you're looking for and as far as I can tell, there really is no means of verify-
ing them except perhaps indirectly.

At this point, to make some of my points slightly more precise I would
like to recall the main theoretical framework in System Identification. In the
canonical identification problem you have a system model and you have some
input and some noisy observations and then you are supposed to say what is
inside (the black-box) and after a few years -- since '67-'68 -- we can also
allow for load disturbance., The most important problem here of course
before you do anything else, is the problem of modelling, and is quite
evident to any of us here who work with these problems as indeed a
crucial step. It is a readily conceded law that no model is good unless it
originates with the user. Next I think it is quite pertinent to ask what do you
mean by identifying, namely, what you want to do with it afterwards? This
doesn't seem to bother many of the speakers today, but perhaps it should. I
have been going around like Diogenes with a lamp trying to find out what you
do with them. Nobody would really give me a straight answer, except to say,
"Well, we're using it here and we're using it there,' It seems to me that one
can distinguish two possible uses: you may want to predict what the behavior
of the system for inputs different from those used in the identification or
verification; and the second one, which to some extent is implied in the first
one, is that you want to somehow control the system afterwards, and since
you know that the system parameters will change in different circumstances,
and we don't know precisely how ahead of time, so you really have to have a
controller which also has an identification phase in it, either implicit or
explicit. If you do that, the problem of identification has slightly changed and
it now goes into adaptive control and in terms of adaptive control you have one
happy circumstance in that nobody really knows how to evaluate an adaptive
control system that I know of (so that we are in the happy world where every
adaptive system is optimal, or cannot be proved otherwise!). Adaptive con-
trol was the promised land of automatic control in 1960, There is a large
tome by the Soviet author Feldbaum promising it to us, but I think it has died
a natural death,

There may be a moral for us in identification, but I'll come to that
later. By the way, I cannot help remarking at this point on the similarity
between pattern recognition and between system identification, the modelling
in the latter and the feature selection problem in the former., Once we select
the right features and once we select the right model, then the rest of it is no
longer much of a problem. Once we have formulated a model - including the
disturbances and measurement errors - finding the parameters can be formu-
lated as a statistical estimation problem. As far as estimation is concerned,
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there is of course quite a history of well established theory and techniques.

In any identification or estimation problem you are looking for some functional
that vanishes at the true number and only at that value, in a suitably restricted
neighborhood. The gradient of the likelihood functional is one such. You look
for a root of the gradient of the log-likelihood functional or in many cases you
can take many variations of this functional to make it vanish at the right value.
Then you have a matrix which figures in the Newton-Raphson- Taylor technique
for finding the root, essentially, except for the averaging process, the one
used by Fisher in 1922, and many people here I noticed did use the term
'Fisher Information Matrix', and the asymptotic variance of the estimate can
be calculated from it. All of this is pretty much standard, so the main diffi-
culty if you have a precisely parameterized model is then in the evaluation of
the likelihood functional, and it turns out that we can make such a calculation
provided the system is linear both to the input as well as the random distur-
bance. You could have a system described by partial differential equations -
a distributed system with boundary data - so long as the response to the input
is linear, the response to the external disturbance is linear and the observa-
tion error can be modelled as additive noise, If you have biases or scale
changes or calibration errors, those are supposed to be known as part of your
measurement system. The additive noise on the observation represents the
unavoidable random error in any measurement. The calculation of the likeli-
hood functional in the continuous case system as in the aircraft parameter
problem, where the basic system dynamics are given in the continuous sense,
can then be made using a ('prewhitening') procedure due to Krein (1958), or,
in its recursive form, using Kalman filtering. See the paper by K. Iliff in the
symposium which is the only one to use a continuous-time model! And here
we also note that the measurement noise, altho gh in theory is white, in prac-
tice the data that you observe is not, and allowance must be made for this.
Even though such a theory was available, say since 1960 or so, it had to await
the formulation by Rediess and Taylor in 1970 of the practical problem of air-
craft parameter identification - stability augmentation to find relevance. It

is unfortunate that the original paper by Rediess and Taylor is not generally
available, at least in the aircraft area and, for example, I could not find any
references to it. I would like to call that perhpas the Rediess-Iliff model
because Taylor's name is used too many times already, and perhaps there is
justice in that because without the formulation and work by Iliff, of course, it
would simply remain a text book example.

Now, whether we use adaptive control or not, the importance of identi-
ficat >n in modelling cannot be overemphasized. This is almost a pet peeve
with me now, so I should like to go in a little bit deeper. As you know, model-
ling is now spreading and affecting every aspect of our lives, I am not talking
about our airplane models or biomedical models, but the models now being
used to make decisions of economic and political importance. Here one can-
structs the model without any attempt at all on identification - on verifying
it on actual data. I would like to pick up now one example which has recently
received lots of publicity. This is the work subsidized by the '"Club of Rome",
started by a group of businessmen in Italy, Germany, and the United States.
The basic model was 'invented' by Professor Forester (interested readers
will want to read his book, '"Limits to Growth'). (Incidentally, his colleague
Meadows claims that 'systems dynamics' was 'invented' by Forester of MIT
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and that the model was the result of 30 years of work at MIT.) This model is
now being used as justification for reducing the standard of living. There's
absolutely no attempt at verification at all on this model (which is even con-
ceptually impossible at the present time), and yet it is being used, to make
decisions which can affect all of us here. I think in a larger sense this is the
importance of the symposium because there are relatively few (very few)
attempts at looking at the problem of identification in a real physical system
hard as it is, and the progress we make will surely have a very great impact
way beyond our own immediate problem. The sobering experience will be
invaluable in models that affect our lives such as this one. Now, you can see
what my fears are because all we have to do is make bids to companies to
identify this model and of course translating for Dr. Queijo, they will produce
any number you want, so depending upon which congressman you are, we'll
furnish you with whatever numbers you want. This is why I think that the need
for some consistent mathematical theory is quite essential, because a com-
puter simulation proves little. I think that in taking at least one such problem,
as the aircraft problem also points up the importance of the role played by the
Center because one must take the first step in recognizing the need for im-
provement and more importantly judge the advances in the state of the art ih
theory and also in juding its value and relevance. If this is true in any ap,lé/li-
cation, I think it is even more true in identification for the reasons I've
already mentioned to you but they're worth repeating, because without actual
real live data identification with simulated data really does not prove anything.
I don't know whether identification with real data proves anything or not, but
at least we think it does beyond the simulated data. I am not saying that
theory by itself has no value of course, on the contrary, the theoretical papers
are of value in this area - they can shape even the basic modelling itself.

I think that I may end on this note: The need for a careful proven
mathematical theory consistent within the model and not 'cluged; up, however
complex, and tested on actual data. For once I would like to have the data-
gathering planned as a statistical design problem with the definite purpose of
identification in mind, and for once to broadcast our failures. Not merely
successes but also the failures as a warning to those who would model the
whole world- and emphasize the great need for caution in playing the identifi-
cation game. I hope that this is but the first of a series of conferences which
will allow the kind of interchange so essential before System Identification
becomes an important valuable day-to-day activity, hopefully unlike adaptive
control which was oversold and has faded away. And once again, I would like
to express the indebtedness of my colleagues in the academic world as well as
the engineering world in general for arranging this important conference.

xd U.S. GOVERNMENT PRINTING OFFICE: 1974—739-160/111
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